Spaces:
Running
Running
:tada: init
Browse files
app.py
CHANGED
@@ -41,9 +41,5 @@ if __name__ == "__main__":
|
|
41 |
outputs=[
|
42 |
gr.Image(label="Image", type="pil"),
|
43 |
],
|
44 |
-
cache_examples=True,
|
45 |
-
examples=[
|
46 |
-
['stabilityai/stable-diffusion-3-medium-diffusers', 'A cat holding a sign that says hello world', ''],
|
47 |
-
]
|
48 |
)
|
49 |
demo.launch()
|
|
|
41 |
outputs=[
|
42 |
gr.Image(label="Image", type="pil"),
|
43 |
],
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
demo.launch()
|
scripts/convert_original_stable_diffusion_to_diffusers.py.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Conversion script for the LDM checkpoints."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import importlib
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
|
28 |
+
parser.add_argument(
|
29 |
+
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
30 |
+
)
|
31 |
+
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
32 |
+
parser.add_argument(
|
33 |
+
"--original_config_file",
|
34 |
+
default=None,
|
35 |
+
type=str,
|
36 |
+
help="The YAML config file corresponding to the original architecture.",
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--config_files",
|
40 |
+
default=None,
|
41 |
+
type=str,
|
42 |
+
help="The YAML config file corresponding to the architecture.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--num_in_channels",
|
46 |
+
default=None,
|
47 |
+
type=int,
|
48 |
+
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--scheduler_type",
|
52 |
+
default="pndm",
|
53 |
+
type=str,
|
54 |
+
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pipeline_type",
|
58 |
+
default=None,
|
59 |
+
type=str,
|
60 |
+
help=(
|
61 |
+
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
|
62 |
+
". If `None` pipeline will be automatically inferred."
|
63 |
+
),
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--image_size",
|
67 |
+
default=None,
|
68 |
+
type=int,
|
69 |
+
help=(
|
70 |
+
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
|
71 |
+
" Base. Use 768 for Stable Diffusion v2."
|
72 |
+
),
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--prediction_type",
|
76 |
+
default=None,
|
77 |
+
type=str,
|
78 |
+
help=(
|
79 |
+
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
|
80 |
+
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
|
81 |
+
),
|
82 |
+
)
|
83 |
+
parser.add_argument(
|
84 |
+
"--extract_ema",
|
85 |
+
action="store_true",
|
86 |
+
help=(
|
87 |
+
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
88 |
+
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
89 |
+
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
90 |
+
),
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--upcast_attention",
|
94 |
+
action="store_true",
|
95 |
+
help=(
|
96 |
+
"Whether the attention computation should always be upcasted. This is necessary when running stable"
|
97 |
+
" diffusion 2.1."
|
98 |
+
),
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--from_safetensors",
|
102 |
+
action="store_true",
|
103 |
+
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--to_safetensors",
|
107 |
+
action="store_true",
|
108 |
+
help="Whether to store pipeline in safetensors format or not.",
|
109 |
+
)
|
110 |
+
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
111 |
+
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
112 |
+
parser.add_argument(
|
113 |
+
"--stable_unclip",
|
114 |
+
type=str,
|
115 |
+
default=None,
|
116 |
+
required=False,
|
117 |
+
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--stable_unclip_prior",
|
121 |
+
type=str,
|
122 |
+
default=None,
|
123 |
+
required=False,
|
124 |
+
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--clip_stats_path",
|
128 |
+
type=str,
|
129 |
+
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
|
130 |
+
required=False,
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
|
134 |
+
)
|
135 |
+
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
136 |
+
parser.add_argument(
|
137 |
+
"--vae_path",
|
138 |
+
type=str,
|
139 |
+
default=None,
|
140 |
+
required=False,
|
141 |
+
help="Set to a path, hub id to an already converted vae to not convert it again.",
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--pipeline_class_name",
|
145 |
+
type=str,
|
146 |
+
default=None,
|
147 |
+
required=False,
|
148 |
+
help="Specify the pipeline class name",
|
149 |
+
)
|
150 |
+
|
151 |
+
args = parser.parse_args()
|
152 |
+
|
153 |
+
if args.pipeline_class_name is not None:
|
154 |
+
library = importlib.import_module("diffusers")
|
155 |
+
class_obj = getattr(library, args.pipeline_class_name)
|
156 |
+
pipeline_class = class_obj
|
157 |
+
else:
|
158 |
+
pipeline_class = None
|
159 |
+
|
160 |
+
pipe = download_from_original_stable_diffusion_ckpt(
|
161 |
+
checkpoint_path_or_dict=args.checkpoint_path,
|
162 |
+
original_config_file=args.original_config_file,
|
163 |
+
config_files=args.config_files,
|
164 |
+
image_size=args.image_size,
|
165 |
+
prediction_type=args.prediction_type,
|
166 |
+
model_type=args.pipeline_type,
|
167 |
+
extract_ema=args.extract_ema,
|
168 |
+
scheduler_type=args.scheduler_type,
|
169 |
+
num_in_channels=args.num_in_channels,
|
170 |
+
upcast_attention=args.upcast_attention,
|
171 |
+
from_safetensors=args.from_safetensors,
|
172 |
+
device=args.device,
|
173 |
+
stable_unclip=args.stable_unclip,
|
174 |
+
stable_unclip_prior=args.stable_unclip_prior,
|
175 |
+
clip_stats_path=args.clip_stats_path,
|
176 |
+
controlnet=args.controlnet,
|
177 |
+
vae_path=args.vae_path,
|
178 |
+
pipeline_class=pipeline_class,
|
179 |
+
)
|
180 |
+
|
181 |
+
if args.half:
|
182 |
+
pipe.to(dtype=torch.float16)
|
183 |
+
|
184 |
+
if args.controlnet:
|
185 |
+
# only save the controlnet model
|
186 |
+
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
187 |
+
else:
|
188 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|