Update pages/bot.py
Browse files- pages/bot.py +31 -6
pages/bot.py
CHANGED
@@ -7,6 +7,11 @@ import os
|
|
7 |
from PyPDF2 import PdfReader
|
8 |
from transformers import pipeline
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
###########
|
11 |
#pip install faiss-cpu
|
12 |
#pip install langchain
|
@@ -82,7 +87,9 @@ def main():
|
|
82 |
if user_question:
|
83 |
st.text(retrieved_docs[0].page_content)
|
84 |
context=retrieved_docs[0].page_content
|
85 |
-
|
|
|
|
|
86 |
generator = pipeline('text-generation', model = 'gpt2')
|
87 |
answer = generator(context, max_length = 30, num_return_sequences=3)
|
88 |
|
@@ -90,12 +97,30 @@ def main():
|
|
90 |
#st.text_area()
|
91 |
st.text(answer)
|
92 |
st.text(type(answer))
|
93 |
-
# bei incoming pdf
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
|
|
|
7 |
from PyPDF2 import PdfReader
|
8 |
from transformers import pipeline
|
9 |
|
10 |
+
#Retriever erweiterung
|
11 |
+
from langchain.prompts import ChatPromptTemplate
|
12 |
+
from langchain.schema import StrOutputParser
|
13 |
+
from langchain.schema.runnable import RunnablePassthrough
|
14 |
+
|
15 |
###########
|
16 |
#pip install faiss-cpu
|
17 |
#pip install langchain
|
|
|
87 |
if user_question:
|
88 |
st.text(retrieved_docs[0].page_content)
|
89 |
context=retrieved_docs[0].page_content
|
90 |
+
question=user_question
|
91 |
+
|
92 |
+
##IDEE Text Generation
|
93 |
generator = pipeline('text-generation', model = 'gpt2')
|
94 |
answer = generator(context, max_length = 30, num_return_sequences=3)
|
95 |
|
|
|
97 |
#st.text_area()
|
98 |
st.text(answer)
|
99 |
st.text(type(answer))
|
|
|
100 |
|
101 |
+
#IDEE Retriever erweitern
|
102 |
+
template = """Answer the question based only on the following context:
|
103 |
+
|
104 |
+
{context}
|
105 |
+
|
106 |
+
Question: {question}
|
107 |
+
"""
|
108 |
+
prompt = ChatPromptTemplate.from_template(template)
|
109 |
+
model = "hkunlp/instructor-base"
|
110 |
+
|
111 |
+
|
112 |
+
def format_docs(docs):
|
113 |
+
return "\n\n".join([d.page_content for d in docs])
|
114 |
+
|
115 |
+
|
116 |
+
chain = (
|
117 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
118 |
+
| prompt
|
119 |
+
| model
|
120 |
+
| StrOutputParser()
|
121 |
+
)
|
122 |
+
|
123 |
+
st.text(chain.invoke(question))
|
124 |
|
125 |
|
126 |
|