Update pages/bot.py
Browse files- pages/bot.py +25 -6
pages/bot.py
CHANGED
@@ -12,6 +12,7 @@ from transformers import AutoModel
|
|
12 |
from langchain.prompts import ChatPromptTemplate
|
13 |
from langchain.schema import StrOutputParser
|
14 |
from langchain.schema.runnable import RunnablePassthrough
|
|
|
15 |
|
16 |
###########
|
17 |
#pip install faiss-cpu
|
@@ -76,7 +77,19 @@ def get_vectorstore():
|
|
76 |
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
|
77 |
return vectorstoreDB
|
78 |
|
|
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def main():
|
81 |
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
|
82 |
user_question = st.text_area("Stell mir eine Frage: ")
|
@@ -92,13 +105,13 @@ def main():
|
|
92 |
st.text(user_question)
|
93 |
|
94 |
##IDEE Text Generation
|
95 |
-
generator = pipeline('text-generation', model = 'gpt2')
|
96 |
-
answer = generator(context, max_length = 30, num_return_sequences=3)
|
97 |
|
98 |
-
st.text("FORMATIERTE ANTWORT:")
|
99 |
#st.text_area()
|
100 |
-
st.text(answer)
|
101 |
-
st.text(type(answer))
|
102 |
|
103 |
# Erstelle die Question Answering-Pipeline für Deutsch
|
104 |
qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2")
|
@@ -110,12 +123,18 @@ def main():
|
|
110 |
st.text("Basisantwort:")
|
111 |
st.text(answer["answer"])
|
112 |
st.text(answer)
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
generator = pipeline('text-generation', model = 'tiiuae/falcon-40b')
|
116 |
generator(answer, max_length = 30, num_return_sequences=3)
|
117 |
st.text("Generierte Erweiterung:")
|
118 |
st.text(generator)
|
|
|
119 |
|
120 |
"""
|
121 |
#IDEE Retriever erweitern
|
|
|
12 |
from langchain.prompts import ChatPromptTemplate
|
13 |
from langchain.schema import StrOutputParser
|
14 |
from langchain.schema.runnable import RunnablePassthrough
|
15 |
+
from langchain.chains import ConversationalRetrievalChain
|
16 |
|
17 |
###########
|
18 |
#pip install faiss-cpu
|
|
|
77 |
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
|
78 |
return vectorstoreDB
|
79 |
|
80 |
+
######
|
81 |
|
82 |
+
def get_conversation_chain(vectorstore):
|
83 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
84 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
85 |
+
llm=llm,
|
86 |
+
retriever=vectorstore.as_retriever()
|
87 |
+
)
|
88 |
+
return conversation_chain
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
#####
|
93 |
def main():
|
94 |
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
|
95 |
user_question = st.text_area("Stell mir eine Frage: ")
|
|
|
105 |
st.text(user_question)
|
106 |
|
107 |
##IDEE Text Generation
|
108 |
+
#generator = pipeline('text-generation', model = 'gpt2')
|
109 |
+
#answer = generator(context, max_length = 30, num_return_sequences=3)
|
110 |
|
111 |
+
#st.text("FORMATIERTE ANTWORT:")
|
112 |
#st.text_area()
|
113 |
+
#st.text(answer)
|
114 |
+
#st.text(type(answer))
|
115 |
|
116 |
# Erstelle die Question Answering-Pipeline für Deutsch
|
117 |
qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2")
|
|
|
123 |
st.text("Basisantwort:")
|
124 |
st.text(answer["answer"])
|
125 |
st.text(answer)
|
126 |
+
|
127 |
+
######
|
128 |
+
|
129 |
+
newA = get_conversation_chain(get_vectorstore())
|
130 |
+
st.text(newA)
|
131 |
|
132 |
+
"""
|
133 |
generator = pipeline('text-generation', model = 'tiiuae/falcon-40b')
|
134 |
generator(answer, max_length = 30, num_return_sequences=3)
|
135 |
st.text("Generierte Erweiterung:")
|
136 |
st.text(generator)
|
137 |
+
"""
|
138 |
|
139 |
"""
|
140 |
#IDEE Retriever erweitern
|