Update pages/bot.py
Browse files- pages/bot.py +7 -0
pages/bot.py
CHANGED
@@ -5,6 +5,7 @@ from langchain.text_splitter import CharacterTextSplitter
|
|
5 |
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
6 |
import os
|
7 |
from PyPDF2 import PdfReader
|
|
|
8 |
|
9 |
###########
|
10 |
#pip install faiss-cpu
|
@@ -80,6 +81,12 @@ def main():
|
|
80 |
)
|
81 |
if user_question:
|
82 |
st.text(retrieved_docs[0].page_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# bei incoming pdf
|
84 |
|
85 |
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
|
|
|
5 |
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
6 |
import os
|
7 |
from PyPDF2 import PdfReader
|
8 |
+
from transformers import pipeline
|
9 |
|
10 |
###########
|
11 |
#pip install faiss-cpu
|
|
|
81 |
)
|
82 |
if user_question:
|
83 |
st.text(retrieved_docs[0].page_content)
|
84 |
+
qa_pipeline = pipeline("question-answering", model="hkunlp/instructor-base", tokenizer="hkunlp/instructor-base")
|
85 |
+
context=retrieved_docs[0].page_content
|
86 |
+
question=user_question
|
87 |
+
answer = qa_pipeline(question=question, context=context)
|
88 |
+
st.text("FORMATIERTE ANTWORT:")
|
89 |
+
st.text(answer)
|
90 |
# bei incoming pdf
|
91 |
|
92 |
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
|