Academic_Research_Assistant / functionality.py
Pupolina's picture
Update functionality.py
f3051e2 verified
raw
history blame
10.9 kB
import warnings
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from happytransformer import HappyTextToText, TTSettings
from styleformer import Styleformer
from sentence_transformers import SentenceTransformer
import chromadb
import pandas as pd
import logging
import re
from threading import Thread
import hashlib
import diskcache as dc
import nltk
nltk.download('punkt_tab')
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO, # filename="py_log.log",filemode="w",
format="%(asctime)s %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
# For chromadb collection
MAX_TOKENS = 512
client = chromadb.Client()
embedder = SentenceTransformer('all-MiniLM-L6-v2')
collection_name = 'papers'
# For grammar checker
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
grammar_cache = dc.Cache('grammar_cache')
# For academic style checks
sf = Styleformer(style=0)
style_cache = dc.Cache('style_cache')
# For text generation
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
model.generation_config.max_new_tokens = 2048
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_cache = dc.Cache('model_cache')
def generate_key(text):
return hashlib.md5(text.encode()).hexdigest()
def split_into_chunks(text, max_tokens=MAX_TOKENS):
sentences = nltk.sent_tokenize(text)
chunks, current = [], ""
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(sentence.split())
if current_tokens + sentence_tokens <= max_tokens:
current += sentence + ' '
current_tokens += sentence_tokens
else:
chunks.append(current.strip())
current, current_tokens = sentence + ' ', sentence_tokens
if current:
chunks.append(current.strip())
return chunks
# def split_into_chunks(text, max_tokens=MAX_TOKENS):
# sentences = text.split(". ")
# chunks = []
# current = ""
# for sentence in sentences:
# if len(current.split()) + len(sentence.split()) <= max_tokens:
# current += sentence + '. '
# else:
# chunks.append(current.strip())
# current = sentence + '. '
# if current:
# chunks.append(current.strip())
# return chunks
def clean_text(text):
# Remove newlines within sentences but keep paragraph breaks
text = re.sub(r'\n(?!\n)', ' ', text)
# Remove multiple newlines, keeping only double newlines for paragraphs
text = re.sub(r'\n{2,}', '\n\n', text)
# Rejoin hyphenated words split across lines
text = re.sub(r'(\w)-\s+(\w)', r'\1\2', text)
# Remove citation brackets and figure numbers
text = re.sub(r'\[\d+\]', '', text) # Removes [7], [6], etc.
text = re.sub(r'Fig\.|Figure', '', text) # Removes "Fig." or "Figure" references
# Strip leading/trailing spaces from each paragraph
paragraphs = text.split('\n')
cleaned_paragraphs = [para.strip() for para in paragraphs if para.strip()]
# Join cleaned paragraphs back with double newlines for readability
cleaned_text = '\n\n'.join(cleaned_paragraphs)
return cleaned_text
def get_collection() -> chromadb.Collection:
collection_names = [collection.name for collection in client.list_collections()]
logging.info(f"Client collection names: {collection_names}")
if collection_name not in collection_names:
logging.info(f"Creation of a collection...")
collection = client.create_collection(name=collection_name)
papers = pd.read_csv("hf://datasets/somosnlp-hackathon-2022/scientific_papers_en/scientific_paper_en.csv")
logging.info(f"The data downloaded from url.")
papers = papers.drop(['id'], axis=1)
papers = papers.iloc[:200]
for i in range(200):
paper = papers.iloc[i]
idx = paper.name
full_text = clean_text('Abstract ' + paper['abstract'] + ' ' + paper['text_no_abstract'])
chunks = split_into_chunks(full_text)
for id, chunk in enumerate(chunks):
embeddings = embedder.encode([chunk])
collection.upsert(ids=f"paper{idx}_chunk_{id}",
documents=[chunk],
embeddings=embeddings,)
logging.info(f"Collection upsert: The content of paper_{idx} was chunked and collected in vector db!")
logging.info(f"Collection is filled!\n")
else:
collection = client.get_collection(name=collection_name)
logging.info(f"Collection '{collection_name}' already exists!")
return collection
def fix_grammar(text: str):
logging.info(f"\n---Fix Grammar input:---\n{text}")
key = generate_key(text)
if key in grammar_cache:
logging.info(f"Similar request was found in 'grammar_cache' and retrieved from it!")
yield grammar_cache[key]
else:
args = TTSettings(num_beams=5, min_length=1)
chunks = split_into_chunks(text=text, max_tokens=40)
corrected_text = ""
error_flag = False
for chunk in chunks:
try:
result = happy_tt.generate_text(f"grammar: {chunk}", args=args)
corrected_part = f"{result.text} "
except Exception as e:
error_flag = True
logging.error(f"Error correcting grammar: {e}")
corrected_part = f"{chunk} "
corrected_text += corrected_part
yield corrected_text
if not error_flag:
grammar_cache.set(key, corrected_text, expire=86400)
logging.info(f"The result was cached in 'grammar_cache'!")
def fix_academic_style(informal_text: str):
logging.info(f"\n---Fix Academic Style input:---\n{informal_text}")
key = generate_key(informal_text)
if key in style_cache:
logging.info(f"Similar request was found in 'style_cache' and retrieved from it!")
yield style_cache[key]
else:
chunks = split_into_chunks(text=informal_text, max_tokens=25)
formal_text = ""
error_flag = False
for chunk in chunks:
try:
corrected_part = sf.transfer(chunk)
if corrected_part is None:
error_flag = True
corrected_part = f"{chunk} "
logging.warning("---COULD NOT FIX ACADEMIC STYLE!\n")
else:
corrected_part = f"{corrected_part} "
except Exception as e:
error_flag = True
logging.error(f"Error in academic style transformation: {e}")
corrected_part = f"{chunk} "
formal_text += corrected_part
yield formal_text
if not error_flag:
style_cache.set(key, formal_text, expire=86400)
logging.info(f"The result was cached in 'style_cache'!")
def _chat_stream(initial_text: str, parts: list):
logging.info(f"\n---Generate Article input:---\n{initial_text}")
parts = ", ".join(parts).lower()
for_cache = initial_text + ' ' + parts
key = generate_key(for_cache)
if key in model_cache:
logging.info(f"Similar request was found in 'model_cache' and retrieved from it!")
yield model_cache[key]
else:
text_embedding = embedder.encode([initial_text])
chroma_collection = get_collection()
results = chroma_collection.query(
query_embeddings=text_embedding,
n_results=1
)
context = results['documents'][0] if results['documents'] else ""
if context == "":
logging.warning(f"COLLECTION QUERY: No context was found in the database!")
messages = [
{"role": "system", "content": """You are helpful Academic Research Assistant which helps to generate
necessary parts of the reserch based on the provided context.
The context is the following: 'written text' - this is the text that user
has for now and want to complete, 'parts' - those are the parts of paper
user needs to complete (it could be the abstract, introduction, methodology,
discussion, conclusion, or full text), 'context' - the similar article
the structure of which can be used as a base for the text (it can be empty
in case of absence of similar papers in the database.). The output should be
only generated article (or parts of it). The responce must be provided as a
raw text. Be precise and follow the structure of academic papers parts."""},
{"role": "user", "content": f"'written text': {initial_text}\n 'parts': {parts}\n 'context': {context}"},
]
input_text = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False,
)
inputs = tokenizer([input_text], return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(
tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
yield response
model_cache.set(key, response, expire=86400)
logging.info(f"The result was cached in 'model_cache'!")
def predict(goal: str, parts: list, context: str):
if context == "":
yield "Write your text first!"
logging.info("No context was provided!")
elif goal == 'Fix Academic Style':
formal_text = ""
for new_text in fix_academic_style(context):
formal_text = new_text
yield formal_text
logging.info(f"\n---Academic style corrected:---\n {formal_text}\n")
elif goal == 'Fix Grammar':
full_response = ""
for new_text in fix_grammar(context):
full_response = new_text
yield full_response
logging.info(f"\n---Grammar corrected:---\n{full_response}\n")
else:
full_response = ""
for new_text in _chat_stream(context, parts):
full_response = new_text
yield full_response
logging.info(f"\nThe text was generated!\n{full_response}")