File size: 16,019 Bytes
af37dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pdb
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from .unet_2d_blocks import (
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
    get_down_block,
    get_up_block,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


class UNet2DConditionModel(ModelMixin, ConfigMixin):
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

    Parameters:
        sample_size (`int`, *optional*): The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
            self,
            sample_size: Optional[int] = None,
            in_channels: int = 4,
            out_channels: int = 4,
            center_input_sample: bool = False,
            flip_sin_to_cos: bool = True,
            freq_shift: int = 0,
            down_block_types: Tuple[str] = (
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "DownBlock2D",
            ),
            up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
            layers_per_block: int = 2,
            downsample_padding: int = 1,
            mid_block_scale_factor: float = 1,
            act_fn: str = "silu",
            norm_num_groups: int = 32,
            norm_eps: float = 1e-5,
            cross_attention_dim: int = 1280,
            attention_head_dim: int = 8,
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim,
                downsample_padding=downsample_padding,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attention_head_dim,
            resnet_groups=norm_num_groups,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )
        if slice_size is not None and slice_size > self.config.attention_head_dim:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )

        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

        self.mid_block.set_attention_slice(slice_size)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

    def forward(
            self,
            sample: torch.FloatTensor,
            timestep: Union[torch.Tensor, float, int],
            encoder_hidden_states: torch.Tensor,
            return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs_coarse tensor
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
            encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)
        # 2. pre-process
        sample = self.conv_in(sample)
        # 3. down
        attn_down = []
        down_block_res_samples = (sample,)
        for block_idx, downsample_block in enumerate(self.down_blocks):
            if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
                sample, res_samples, cross_atten_prob = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states
                )
                attn_down.append(cross_atten_prob)
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        sample, attn_mid = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)

        # 5. up
        attn_up = []
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
                sample, cross_atten_prob = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                )
                attn_up.append(cross_atten_prob)
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample), attn_up, attn_mid, attn_down