Spaces:
Sleeping
Sleeping
File size: 7,729 Bytes
af37dce 7cb3306 af37dce 7cb3306 af37dce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import torch
from torch import nn
import math
from PIL import Image, ImageDraw, ImageFont
import logging
import os
import pandas as pd
import csv
import pickle
import numpy as np
from torch.nn import BCELoss
from torch.nn import functional as F
import math
import numbers
from typing import List
def get_all_attention_64(attn_maps_down, attn_maps_mid , attn_maps_up, res = 16):
result = []
for attn_map_integrated in attn_maps_up:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated.squeeze(0)
# print(attn_map.shape)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if H == res:
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.squeeze(0)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==8):
item = attn_map.reshape(-1, 8, 8, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
for attn_map_integrated in attn_maps_down:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated.squeeze(0)
if attn_map == []: continue
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
if H == res:
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
# print('RES LENGTH', len(result))
# for maps in result:
# print(maps.shape)
result = torch.cat(result, dim=0)
result = result.sum(0) / result.shape[0]
return result
def compute_loco_v2(attn_maps_down, attn_maps_mid, attn_maps_up, bboxes, object_positions, smooth_attn=True, topk = 0.8):
loss = 0.
pad_loss = 0.
total_fg_map = torch.zeros(size=(64, 64)).cuda()
alpha = 0.2
beta = 0.8
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
attn16 = get_all_attention_64(attn_maps_down[-1]+ attn_maps_down[-2], attn_maps_mid, attn_maps_up[0]+attn_maps_up[1], 16)
all_attn = [attn16]
max_loss = 0
for attn_map in all_attn:
sum_in = 0.
sum_out = 0.
i, j, k = attn_map.shape
H = W = i
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
total_fg_map[y_min: y_max, x_min: x_max] = 1
for obj_position in [object_positions[obj_idx]]:
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
ca_map_obj = ca_map_obj.reshape(H, W)
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
sum_in += (norm_ca_map_obj * mask).sum()
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
loss += (obj_loss/len(object_positions[obj_idx]))
sot_map = attn_map[:, :, 0].reshape(H, W)
eot_map = attn_map[:, :, -1].reshape(H, W)
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
norm_eot_map = eot_map / eot_map.max()
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
total_fg_mask = total_fg_map
fg_map = pad_map * total_fg_mask
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.to(torch.float16).reshape(-1)), fg_map.to(torch.float16).reshape(-1))
pad_loss += bce_loss
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
return loss + alpha * pad_loss
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
loss = 0
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda()
for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss/len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
for attn_map_integrated in attn_maps_up[0]:
attn_map = attn_map_integrated.chunk(2)[1]
#
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
for obj_position in object_positions[obj_idx]:
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
dim=-1)
obj_loss += torch.mean((1 - activation_value) ** 2)
loss += (obj_loss / len(object_positions[obj_idx]))
# compute loss on padding tokens
# activation_value = torch.zeros(size=(b, )).cuda()
# for obj_idx in range(object_number):
# bbox = bboxes[obj_idx]
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
#
# loss += torch.mean((1 - activation_value) ** 2)
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
return loss |