Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import pytorch_lightning as pl | |
from omegaconf import OmegaConf | |
from torch.nn import functional as F | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import LambdaLR | |
from copy import deepcopy | |
from einops import rearrange | |
from glob import glob | |
from natsort import natsorted | |
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel | |
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config | |
__models__ = { | |
'class_label': EncoderUNetModel, | |
'segmentation': UNetModel | |
} | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class NoisyLatentImageClassifier(pl.LightningModule): | |
def __init__(self, | |
diffusion_path, | |
num_classes, | |
ckpt_path=None, | |
pool='attention', | |
label_key=None, | |
diffusion_ckpt_path=None, | |
scheduler_config=None, | |
weight_decay=1.e-2, | |
log_steps=10, | |
monitor='val/loss', | |
*args, | |
**kwargs): | |
super().__init__(*args, **kwargs) | |
self.num_classes = num_classes | |
# get latest config of diffusion model | |
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] | |
self.diffusion_config = OmegaConf.load(diffusion_config).model | |
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path | |
self.load_diffusion() | |
self.monitor = monitor | |
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 | |
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps | |
self.log_steps = log_steps | |
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ | |
else self.diffusion_model.cond_stage_key | |
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' | |
if self.label_key not in __models__: | |
raise NotImplementedError() | |
self.load_classifier(ckpt_path, pool) | |
self.scheduler_config = scheduler_config | |
self.use_scheduler = self.scheduler_config is not None | |
self.weight_decay = weight_decay | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
sd, strict=False) | |
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def load_diffusion(self): | |
model = instantiate_from_config(self.diffusion_config) | |
self.diffusion_model = model.eval() | |
self.diffusion_model.train = disabled_train | |
for param in self.diffusion_model.parameters(): | |
param.requires_grad = False | |
def load_classifier(self, ckpt_path, pool): | |
model_config = deepcopy(self.diffusion_config.params.unet_config.params) | |
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels | |
model_config.out_channels = self.num_classes | |
if self.label_key == 'class_label': | |
model_config.pool = pool | |
self.model = __models__[self.label_key](**model_config) | |
if ckpt_path is not None: | |
print('#####################################################################') | |
print(f'load from ckpt "{ckpt_path}"') | |
print('#####################################################################') | |
self.init_from_ckpt(ckpt_path) | |
def get_x_noisy(self, x, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x)) | |
continuous_sqrt_alpha_cumprod = None | |
if self.diffusion_model.use_continuous_noise: | |
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) | |
# todo: make sure t+1 is correct here | |
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, | |
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) | |
def forward(self, x_noisy, t, *args, **kwargs): | |
return self.model(x_noisy, t) | |
def get_input(self, batch, k): | |
x = batch[k] | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = rearrange(x, 'b h w c -> b c h w') | |
x = x.to(memory_format=torch.contiguous_format).float() | |
return x | |
def get_conditioning(self, batch, k=None): | |
if k is None: | |
k = self.label_key | |
assert k is not None, 'Needs to provide label key' | |
targets = batch[k].to(self.device) | |
if self.label_key == 'segmentation': | |
targets = rearrange(targets, 'b h w c -> b c h w') | |
for down in range(self.numd): | |
h, w = targets.shape[-2:] | |
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') | |
# targets = rearrange(targets,'b c h w -> b h w c') | |
return targets | |
def compute_top_k(self, logits, labels, k, reduction="mean"): | |
_, top_ks = torch.topk(logits, k, dim=1) | |
if reduction == "mean": | |
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() | |
elif reduction == "none": | |
return (top_ks == labels[:, None]).float().sum(dim=-1) | |
def on_train_epoch_start(self): | |
# save some memory | |
self.diffusion_model.model.to('cpu') | |
def write_logs(self, loss, logits, targets): | |
log_prefix = 'train' if self.training else 'val' | |
log = {} | |
log[f"{log_prefix}/loss"] = loss.mean() | |
log[f"{log_prefix}/acc@1"] = self.compute_top_k( | |
logits, targets, k=1, reduction="mean" | |
) | |
log[f"{log_prefix}/acc@5"] = self.compute_top_k( | |
logits, targets, k=5, reduction="mean" | |
) | |
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) | |
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) | |
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) | |
def shared_step(self, batch, t=None): | |
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) | |
targets = self.get_conditioning(batch) | |
if targets.dim() == 4: | |
targets = targets.argmax(dim=1) | |
if t is None: | |
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() | |
else: | |
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() | |
x_noisy = self.get_x_noisy(x, t) | |
logits = self(x_noisy, t) | |
loss = F.cross_entropy(logits, targets, reduction='none') | |
self.write_logs(loss.detach(), logits.detach(), targets.detach()) | |
loss = loss.mean() | |
return loss, logits, x_noisy, targets | |
def training_step(self, batch, batch_idx): | |
loss, *_ = self.shared_step(batch) | |
return loss | |
def reset_noise_accs(self): | |
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in | |
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} | |
def on_validation_start(self): | |
self.reset_noise_accs() | |
def validation_step(self, batch, batch_idx): | |
loss, *_ = self.shared_step(batch) | |
for t in self.noisy_acc: | |
_, logits, _, targets = self.shared_step(batch, t) | |
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) | |
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) | |
return loss | |
def configure_optimizers(self): | |
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) | |
if self.use_scheduler: | |
scheduler = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
scheduler = [ | |
{ | |
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
return [optimizer], scheduler | |
return optimizer | |
def log_images(self, batch, N=8, *args, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.diffusion_model.first_stage_key) | |
log['inputs'] = x | |
y = self.get_conditioning(batch) | |
if self.label_key == 'class_label': | |
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) | |
log['labels'] = y | |
if ismap(y): | |
log['labels'] = self.diffusion_model.to_rgb(y) | |
for step in range(self.log_steps): | |
current_time = step * self.log_time_interval | |
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time) | |
log[f'inputs@t{current_time}'] = x_noisy | |
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) | |
pred = rearrange(pred, 'b h w c -> b c h w') | |
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) | |
for key in log: | |
log[key] = log[key][:N] | |
return log | |