Spaces:
Sleeping
Sleeping
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
# import configigure | |
# from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder | |
from torch.utils import checkpoint | |
import os | |
from torchvision.utils import save_image | |
iter_att = 0 | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return{el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum('bhdn,bhen->bhde', k, v) | |
out = torch.einsum('bhde,bhdn->bhen', context, q) | |
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, key_dim, value_dim, heads=8, dim_head=64, dropout=0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(key_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(value_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) | |
def fill_inf_from_mask(self, sim, mask): | |
if mask is not None: | |
B,M = mask.shape | |
mask = mask.unsqueeze(1).repeat(1,self.heads,1).reshape(B*self.heads,1,-1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
sim.masked_fill_(~mask, max_neg_value) | |
return sim | |
# def scaled_dot_product(q, k, v, mask=None): | |
# d_k = q.size()[-1] | |
# attn_logits = torch.matmul(q, k.transpose(-2, -1)) | |
# attn_logits = attn_logits / math.sqrt(d_k) | |
# if mask is not None: | |
# attn_logits = attn_logits.masked_fill(mask == 0, -9e15) | |
# attention = F.softmax(attn_logits, dim=-1) | |
# values = torch.matmul(attention, v) | |
# return values, attention | |
def forward(self, x, key, value, mask=None): | |
# import pdb; pdb.set_trace() | |
q = self.to_q(x) # B*N*(H*C) | |
k = self.to_k(key) # B*M*(H*C) | |
v = self.to_v(value) # B*M*(H*C) | |
B, N, HC = q.shape | |
_, M, _ = key.shape | |
H = self.heads | |
C = HC // H | |
q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C | |
k = k.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C | |
v = v.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale # (B*H)*N*M | |
self.fill_inf_from_mask(sim, mask) | |
attn = sim.softmax(dim=-1) # (B*H)*N*M | |
# import pdb; pdb.set_trace() | |
# if attn.shape[1] == 4096: | |
# self.visual_att(attn) | |
out = torch.einsum('b i j, b j d -> b i d', attn, v) # (B*H)*N*C | |
out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C) | |
return self.to_out(out), attn | |
def visual_att(self, att): | |
global iter_att | |
ll = [0,2,7] | |
for i in range(12): | |
kk = torch.sum(att[:,:,i], axis=0) | |
kk = kk.reshape(64,64) | |
save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png')) | |
iter_att += 1 | |
class SelfAttention(nn.Module): | |
def __init__(self, query_dim, heads=8, dim_head=64, dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) | |
def forward(self, x, gated=False): | |
q = self.to_q(x) # B*N*(H*C) | |
k = self.to_k(x) # B*N*(H*C) | |
v = self.to_v(x) # B*N*(H*C) | |
B, N, HC = q.shape | |
H = self.heads | |
C = HC // H | |
# if gated: import pdb; pdb.set_trace() | |
# import pdb; pdb.set_trace() | |
q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C | |
k = k.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C | |
v = v.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C | |
sim = torch.einsum('b i c, b j c -> b i j', q, k) * self.scale # (B*H)*N*N | |
attn = sim.softmax(dim=-1) # (B*H)*N*N | |
# if gated and attn.shape[1] == 4126: | |
# self.visual_att(attn) | |
out = torch.einsum('b i j, b j c -> b i c', attn, v) # (B*H)*N*C | |
out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C) | |
return self.to_out(out), attn | |
def visual_att(self, att): | |
global iter_att | |
ll = [0,2,7] | |
for i in range(): | |
kk = torch.sum(att[i],axis=0) | |
kk = kk[:4096].reshape(64,64) | |
save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png')) | |
iter_att += 1 | |
class GatedCrossAttentionDense(nn.Module): | |
def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head): | |
super().__init__() | |
self.attn = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, glu=True) | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) | |
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) | |
# this can be useful: we can externally change magnitude of tanh(alpha) | |
# for example, when it is set to 0, then the entire model is same as original one | |
self.scale = 1 | |
def forward(self, x, objs): | |
x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(x), objs, objs) | |
x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) | |
return x | |
class GatedSelfAttentionDense(nn.Module): | |
def __init__(self, query_dim, context_dim, n_heads, d_head): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, glu=True) | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) | |
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) | |
# this can be useful: we can externally change magnitude of tanh(alpha) | |
# for example, when it is set to 0, then the entire model is same as original one | |
self.scale = 1 | |
def forward(self, x, objs,t): | |
# if t >300: | |
# self.scale = 1 | |
# elif t > 200: | |
# self.scale = 0.9 | |
# else: | |
# self.scale = 0.6 | |
# if t >700: | |
# self.scale = 1 | |
# elif t > 300: | |
# self.scale = 0.7 | |
# else: | |
# self.scale = 0.4 | |
# self.scale = 0 | |
N_visual = x.shape[1] | |
objs = self.linear(objs) | |
out, grounding_att = self.attn( self.norm1(torch.cat([x,objs],dim=1)), True ) | |
out = out[:,0:N_visual,:] | |
x = x + self.scale*torch.tanh(self.alpha_attn) * out | |
x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) | |
return x , grounding_att | |
class GatedSelfAttentionDense2(nn.Module): | |
def __init__(self, query_dim, context_dim, n_heads, d_head): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, glu=True) | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) ) | |
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) ) | |
# this can be useful: we can externally change magnitude of tanh(alpha) | |
# for example, when it is set to 0, then the entire model is same as original one | |
self.scale = 1 | |
def forward(self, x, objs): | |
B, N_visual, _ = x.shape | |
B, N_ground, _ = objs.shape | |
objs = self.linear(objs) | |
# sanity check | |
size_v = math.sqrt(N_visual) | |
size_g = math.sqrt(N_ground) | |
assert int(size_v) == size_v, "Visual tokens must be square rootable" | |
assert int(size_g) == size_g, "Grounding tokens must be square rootable" | |
size_v = int(size_v) | |
size_g = int(size_g) | |
# select grounding token and resize it to visual token size as residual | |
out = self.attn( self.norm1(torch.cat([x,objs],dim=1)) )[:,N_visual:,:] | |
out = out.permute(0,2,1).reshape( B,-1,size_g,size_g ) | |
out = torch.nn.functional.interpolate(out, (size_v,size_v), mode='bicubic') | |
residual = out.reshape(B,-1,N_visual).permute(0,2,1) | |
# add residual to visual feature | |
x = x + self.scale*torch.tanh(self.alpha_attn) * residual | |
x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) ) | |
return x | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=True): | |
super().__init__() | |
self.attn1 = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, glu=True) | |
self.attn2 = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head) | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.norm3 = nn.LayerNorm(query_dim) | |
self.use_checkpoint = use_checkpoint | |
if fuser_type == "gatedSA": | |
# note key_dim here actually is context_dim | |
self.fuser = GatedSelfAttentionDense(query_dim, key_dim, n_heads, d_head) | |
elif fuser_type == "gatedSA2": | |
# note key_dim here actually is context_dim | |
self.fuser = GatedSelfAttentionDense2(query_dim, key_dim, n_heads, d_head) | |
elif fuser_type == "gatedCA": | |
self.fuser = GatedCrossAttentionDense(query_dim, key_dim, value_dim, n_heads, d_head) | |
else: | |
assert False | |
def forward(self, x, context, objs,t): | |
# return checkpoint(self._forward, (x, context, objs), self.parameters(), self.use_checkpoint) | |
# import pdb; pdb.set_trace() | |
# if self.use_checkpoint and x.requires_grad: | |
# return checkpoint.checkpoint(self._forward, x, context, objs,t) | |
# else: | |
return self._forward(x, context, objs,t) | |
def _forward(self, x, context, objs,t): | |
# self_att_grounding = [] | |
out, self_prob = self.attn1( self.norm1(x) ) | |
x = x + out | |
x, self_prob_grounding = self.fuser(x, objs,t) # identity mapping in the beginning | |
x_1, prob = self.attn2(self.norm2(x), context, context) | |
x = x + x_1 | |
x = self.ff(self.norm3(x)) + x | |
# self_att_grounding.append(self_prob) | |
# self_att_grounding.append(self_prob_grounding) | |
return x, prob, self_prob | |
class SpatialTransformer(nn.Module): | |
def __init__(self, in_channels, key_dim, value_dim, n_heads, d_head, depth=1, fuser_type=None, use_checkpoint=True): | |
super().__init__() | |
self.in_channels = in_channels | |
query_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
self.proj_in = nn.Conv2d(in_channels, | |
query_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
self.proj_out = zero_module(nn.Conv2d(query_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
def forward(self, x, context, objs,t): | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c') | |
probs = [] | |
self_prob_list = [] | |
for block in self.transformer_blocks: | |
x, prob, self_prob = block(x, context, objs,t) | |
probs.append(prob) | |
self_prob_list.append(self_prob) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) | |
x = self.proj_out(x) | |
return x + x_in, probs, self_prob_list |