Pusheen's picture
Upload 139 files
281df87 verified
raw
history blame
21.1 kB
from abc import abstractmethod
from functools import partial
import math
import numpy as np
import random
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
# from .positionnet import PositionNet
from torch.utils import checkpoint
from ldm.util import instantiate_from_config
from copy import deepcopy
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context, objs,t):
probs = []
self_prob_list = []
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x, prob, self_prob = layer(x, context, objs,t)
probs.append(prob)
self_prob_list.append(self_prob)
else:
x = layer(x)
return x, probs, self_prob_list
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
# return checkpoint(
# self._forward, (x, emb), self.parameters(), self.use_checkpoint
# )
# if self.use_checkpoint and x.requires_grad:
# return checkpoint.checkpoint(self._forward, x, emb )
# else:
return self._forward(x, emb)
def _forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class UNetModel(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
num_heads=8,
use_scale_shift_norm=False,
transformer_depth=1,
positive_len = 768,
context_dim=None,
fuser_type = None,
is_inpaint = False,
is_style = False,
grounding_downsampler = None,
):
super().__init__()
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.context_dim = context_dim
self.fuser_type = fuser_type
self.is_inpaint = is_inpaint
self.positive_len = positive_len
assert fuser_type in ["gatedSA","gatedSA2","gatedCA"]
self.grounding_tokenizer_input = None # set externally
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.downsample_net = None
self.additional_channel_from_downsampler = 0
self.first_conv_type = "SD"
self.first_conv_restorable = True
if grounding_downsampler is not None:
self.downsample_net = instantiate_from_config(grounding_downsampler)
self.additional_channel_from_downsampler = self.downsample_net.out_dim
self.first_conv_type = "GLIGEN"
if is_inpaint:
# The new added channels are: masked image (encoded image) and mask, which is 4+1
in_c = in_channels+self.additional_channel_from_downsampler+in_channels+1
self.first_conv_restorable = False # in inpaint; You must use extra channels to take in masked real image
else:
in_c = in_channels+self.additional_channel_from_downsampler
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_c, model_channels, 3, padding=1))])
input_block_chans = [model_channels]
ch = model_channels
ds = 1
# = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = #
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [ ResBlock(ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,) ]
ch = mult * model_channels
if ds in attention_resolutions:
dim_head = ch // num_heads
layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint))
self.input_blocks.append(TimestepEmbedSequential(*layers))
input_block_chans.append(ch)
if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature
out_ch = ch
self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) )
ch = out_ch
input_block_chans.append(ch)
ds *= 2
dim_head = ch // num_heads
# self.input_blocks = [ C | RT RT D | RT RT D | RT RT D | R R ]
# = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = #
self.middle_block = TimestepEmbedSequential(
ResBlock(ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm),
SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint),
ResBlock(ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm))
# = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = #
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [ ResBlock(ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm) ]
ch = model_channels * mult
if ds in attention_resolutions:
dim_head = ch // num_heads
layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) )
if level and i == num_res_blocks:
out_ch = ch
layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) )
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
# self.output_blocks = [ R R RU | RT RT RTU | RT RT RTU | RT RT RT ]
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
# self.position_net = instantiate_from_config(grounding_tokenizer)
from .text_grounding_net import PositionNet
self.position_net = PositionNet(in_dim=positive_len, out_dim=context_dim)
def restore_first_conv_from_SD(self):
if self.first_conv_restorable:
device = self.input_blocks[0][0].weight.device
SD_weights = th.load("gligen/SD_input_conv_weight_bias.pth")
self.GLIGEN_first_conv_state_dict = deepcopy(self.input_blocks[0][0].state_dict())
self.input_blocks[0][0] = conv_nd(2, 4, 320, 3, padding=1)
self.input_blocks[0][0].load_state_dict(SD_weights)
self.input_blocks[0][0].to(device)
self.first_conv_type = "SD"
else:
print("First conv layer is not restorable and skipped this process, probably because this is an inpainting model?")
def restore_first_conv_from_GLIGEN(self):
breakpoint() # TODO
def forward_position_net(self,input):
# import pdb; pdb.set_trace()
if ("boxes" in input):
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
_ , self.max_box, _ = text_embeddings.shape
else:
dtype = input["x"].dtype
batch = input["x"].shape[0]
device = input["x"].device
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
masks = th.zeros(batch, self.max_box).type(dtype).to(device)
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
if self.training and random.random() < 0.1: # random drop for guidance
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C
return objs
def forward_position_net_with_image(self,input):
if ("boxes" in input):
boxes = input["boxes"]
masks = input["masks"]
text_masks = input["text_masks"]
image_masks = input["image_masks"]
text_embeddings = input["text_embeddings"]
image_embeddings = input["image_embeddings"]
_ , self.max_box, _ = text_embeddings.shape
else:
dtype = input["x"].dtype
batch = input["x"].shape[0]
device = input["x"].device
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
masks = th.zeros(batch, self.max_box).type(dtype).to(device)
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
if self.training and random.random() < 0.1: # random drop for guidance
boxes = boxes*0
masks = masks*0
text_masks = text_masks*0
image_masks = image_masks*0
text_embeddings = text_embeddings*0
image_embeddings = image_embeddings*0
objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C
return objs
def forward(self, input,unc=False):
if ("boxes" in input):
# grounding_input = input["grounding_input"]
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
_ , self.max_box, _ = text_embeddings.shape
else:
# Guidance null case
# grounding_input = self.grounding_tokenizer_input.get_null_input()
# boxes, masks, text_embeddings = input["boxes"]*0, input["masks"]*0, input["text_embeddings"]*0
dtype = input["x"].dtype
batch = input["x"].shape[0]
device = input["x"].device
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
masks = th.zeros(batch, self.max_box).type(dtype).to(device)
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
if self.training and random.random() < 0.1 : # random drop for guidance
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
objs = self.position_net( boxes, masks, text_embeddings )
# Time embedding
t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
# input tensor
h = input["x"]
t = input["timesteps"]
if self.downsample_net != None and self.first_conv_type=="GLIGEN":
temp = self.downsample_net(input["grounding_extra_input"])
h = th.cat( [h,temp], dim=1 )
if self.is_inpaint:#self.inpaint_mode:
if self.downsample_net != None:
breakpoint() # TODO: think about this case
h = th.cat( [h, input["inpainting_extra_input"]], dim=1 )
# Text input
context = input["context"]
# Start forwarding
hs = []
probs_first = []
self_prob_list_first = []
for module in self.input_blocks:
h,prob, self_prob = module(h, emb, context, objs,t)
hs.append(h)
probs_first.append(prob)
self_prob_list_first.append(self_prob)
h,mid_prob, self_prob_list_second = self.middle_block(h, emb, context, objs,t)
probs_third = []
self_prob_list_third = []
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h, prob, self_prob = module(h, emb, context, objs,t)
probs_third.append(prob)
self_prob_list_third.append(self_prob)
return self.out(h),probs_third , mid_prob, probs_first, self_prob_list_first, [self_prob_list_second], self_prob_list_third