Spaces:
Sleeping
Sleeping
# import os | |
# os.environ["CUDA_VISIBLE_DEVICES"]="4" | |
import gradio as gr | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler | |
from my_model import unet_2d_condition | |
import json | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
from functools import partial | |
import math | |
from utils import compute_loco_v2 | |
from gradio import processing_utils | |
from typing import Optional | |
import warnings | |
import sys | |
sys.tracebacklimit = 0 | |
class Blocks(gr.Blocks): | |
def __init__( | |
self, | |
theme: str = "default", | |
analytics_enabled: Optional[bool] = None, | |
mode: str = "blocks", | |
title: str = "Gradio", | |
css: Optional[str] = None, | |
**kwargs, | |
): | |
self.extra_configs = { | |
'thumbnail': kwargs.pop('thumbnail', ''), | |
'url': kwargs.pop('url', 'https://gradio.app/'), | |
'creator': kwargs.pop('creator', '@teamGradio'), | |
} | |
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs) | |
warnings.filterwarnings("ignore") | |
def get_config_file(self): | |
config = super(Blocks, self).get_config_file() | |
for k, v in self.extra_configs.items(): | |
config[k] = v | |
return config | |
def draw_box(boxes=[], texts=[], img=None): | |
if len(boxes) == 0 and img is None: | |
return None | |
if img is None: | |
img = Image.new('RGB', (512, 512), (255, 255, 255)) | |
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"] | |
draw = ImageDraw.Draw(img) | |
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18) | |
print(boxes) | |
for bid, box in enumerate(boxes): | |
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4) | |
anno_text = texts[bid] | |
draw.rectangle( | |
[box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], | |
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4) | |
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font, | |
fill=(255, 255, 255)) | |
return img | |
''' | |
inference model | |
''' | |
def inference(device, unet, vae, tokenizer, text_encoder, prompt, bboxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale): | |
uncond_input = tokenizer( | |
[""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" | |
) | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0] | |
input_ids = tokenizer( | |
prompt, | |
padding="max_length", | |
truncation=True, | |
max_length=tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids[0].unsqueeze(0).to(device) | |
# text_embeddings = text_encoder(input_ids)[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]]) | |
# text_embeddings[1, 1, :] = text_embeddings[1, 2, :] | |
generator = torch.manual_seed(rand_seed) # Seed generator to create the inital latent noise | |
latents = torch.randn( | |
(batch_size, 4, 64, 64), | |
generator=generator, | |
).to(device) | |
# noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
noise_scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) | |
# generator = torch.Generator("cuda").manual_seed(1024) | |
noise_scheduler.set_timesteps(50) | |
latents = latents * noise_scheduler.init_noise_sigma | |
loss = torch.tensor(10000) | |
for index, t in enumerate(noise_scheduler.timesteps): | |
iteration = 0 | |
while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step: | |
latents = latents.requires_grad_(True) | |
# latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = latents | |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \ | |
unet(latent_model_input, t, encoder_hidden_states=text_encoder(input_ids)[0]) | |
# update latents with guidence from gaussian blob | |
loss = compute_loco_v2(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes, | |
object_positions=object_positions) * loss_scale | |
# print(loss.item() / loss_scale) | |
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0] | |
latents = latents - grad_cond | |
iteration += 1 | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
with torch.no_grad(): | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \ | |
unet(latent_model_input, t, encoder_hidden_states=text_embeddings) | |
noise_pred = noise_pred.sample | |
# perform classifier-free guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample | |
torch.cuda.empty_cache() | |
# Decode image | |
with torch.no_grad(): | |
# print("decode image") | |
latents = 1 / 0.18215 * latents | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def get_concat(ims): | |
if len(ims) == 1: | |
n_col = 1 | |
else: | |
n_col = 2 | |
n_row = math.ceil(len(ims) / 2) | |
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white") | |
for i, im in enumerate(ims): | |
row_id = i // n_col | |
col_id = i % n_col | |
dst.paste(im, (im.width * col_id, im.height * row_id)) | |
return dst | |
def click_on_display(language_instruction, grounding_texts, sketch_pad, | |
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter, | |
state): | |
if 'boxes' not in state: | |
state['boxes'] = [] | |
boxes = state['boxes'] | |
x = Image.open('./images/dog.png') | |
gen_images = [gr.Image.update(value=x, visible=True)] | |
return gen_images + [state] | |
def generate(unet, vae, tokenizer, text_encoder, language_instruction, grounding_texts, sketch_pad, | |
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter, | |
state): | |
if 'boxes' not in state: | |
state['boxes'] = [] | |
boxes = state['boxes'] | |
grounding_texts = [x.strip() for x in grounding_texts.split(';')] | |
# assert len(boxes) == len(grounding_texts) | |
if len(boxes) != len(grounding_texts): | |
if len(boxes) < len(grounding_texts): | |
raise ValueError("""The number of boxes should be equal to the number of grounding objects. | |
Number of boxes drawn: {}, number of grounding tokens: {}. | |
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts))) | |
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts)) | |
boxes = (np.asarray(boxes) / 512).tolist() | |
boxes = [[box] for box in boxes] | |
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)}) | |
language_instruction_list = language_instruction.strip('.').split(' ') | |
object_positions = [] | |
for obj in grounding_texts: | |
obj_position = [] | |
for word in obj.split(' '): | |
obj_first_index = language_instruction_list.index(word) + 1 | |
obj_position.append(obj_first_index) | |
object_positions.append(obj_position) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, boxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed, guidance_scale) | |
blank_samples = batch_size % 2 if batch_size > 1 else 0 | |
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \ | |
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ | |
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] | |
return gen_images + [state] | |
def binarize(x): | |
return (x != 0).astype('uint8') * 255 | |
def sized_center_crop(img, cropx, cropy): | |
y, x = img.shape[:2] | |
startx = x // 2 - (cropx // 2) | |
starty = y // 2 - (cropy // 2) | |
return img[starty:starty + cropy, startx:startx + cropx] | |
def sized_center_fill(img, fill, cropx, cropy): | |
y, x = img.shape[:2] | |
startx = x // 2 - (cropx // 2) | |
starty = y // 2 - (cropy // 2) | |
img[starty:starty + cropy, startx:startx + cropx] = fill | |
return img | |
def sized_center_mask(img, cropx, cropy): | |
y, x = img.shape[:2] | |
startx = x // 2 - (cropx // 2) | |
starty = y // 2 - (cropy // 2) | |
center_region = img[starty:starty + cropy, startx:startx + cropx].copy() | |
img = (img * 0.2).astype('uint8') | |
img[starty:starty + cropy, startx:startx + cropx] = center_region | |
return img | |
def center_crop(img, HW=None, tgt_size=(512, 512)): | |
if HW is None: | |
H, W = img.shape[:2] | |
HW = min(H, W) | |
img = sized_center_crop(img, HW, HW) | |
img = Image.fromarray(img) | |
img = img.resize(tgt_size) | |
return np.array(img) | |
def draw(input, grounding_texts, new_image_trigger, state): | |
if type(input) == dict: | |
image = input['image'] | |
mask = input['mask'] | |
else: | |
mask = input | |
if mask.ndim == 3: | |
mask = 255 - mask[..., 0] | |
image_scale = 1.0 | |
mask = binarize(mask) | |
if type(mask) != np.ndarray: | |
mask = np.array(mask) | |
if mask.sum() == 0: | |
state = {} | |
image = None | |
if 'boxes' not in state: | |
state['boxes'] = [] | |
if 'masks' not in state or len(state['masks']) == 0: | |
state['masks'] = [] | |
last_mask = np.zeros_like(mask) | |
else: | |
last_mask = state['masks'][-1] | |
if type(mask) == np.ndarray and mask.size > 1: | |
diff_mask = mask - last_mask | |
else: | |
diff_mask = np.zeros([]) | |
if diff_mask.sum() > 0: | |
x1x2 = np.where(diff_mask.max(0) != 0)[0] | |
y1y2 = np.where(diff_mask.max(1) != 0)[0] | |
y1, y2 = y1y2.min(), y1y2.max() | |
x1, x2 = x1x2.min(), x1x2.max() | |
if (x2 - x1 > 5) and (y2 - y1 > 5): | |
state['masks'].append(mask.copy()) | |
state['boxes'].append((x1, y1, x2, y2)) | |
grounding_texts = [x.strip() for x in grounding_texts.split(';')] | |
grounding_texts = [x for x in grounding_texts if len(x) > 0] | |
if len(grounding_texts) < len(state['boxes']): | |
grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))] | |
box_image = draw_box(state['boxes'], grounding_texts, image) | |
return [box_image, new_image_trigger, image_scale, state] | |
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False): | |
if task != 'Grounded Inpainting': | |
sketch_pad_trigger = sketch_pad_trigger + 1 | |
blank_samples = batch_size % 2 if batch_size > 1 else 0 | |
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] | |
# state = {} | |
return [None, sketch_pad_trigger, None, 1.0] + out_images + [{}] | |
def main(): | |
css = """ | |
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img | |
{ | |
height: var(--height) !important; | |
max-height: var(--height) !important; | |
min-height: var(--height) !important; | |
} | |
#paper-info a { | |
color:#008AD7; | |
text-decoration: none; | |
} | |
#paper-info a:hover { | |
cursor: pointer; | |
text-decoration: none; | |
} | |
.tooltip { | |
color: #555; | |
position: relative; | |
display: inline-block; | |
cursor: pointer; | |
} | |
.tooltip .tooltiptext { | |
visibility: hidden; | |
width: 400px; | |
background-color: #555; | |
color: #fff; | |
text-align: center; | |
padding: 5px; | |
border-radius: 5px; | |
position: absolute; | |
z-index: 1; /* Set z-index to 1 */ | |
left: 10px; | |
top: 100%; | |
opacity: 0; | |
transition: opacity 0.3s; | |
} | |
.tooltip:hover .tooltiptext { | |
visibility: visible; | |
opacity: 1; | |
z-index: 9999; /* Set a high z-index value when hovering */ | |
} | |
""" | |
rescale_js = """ | |
function(x) { | |
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); | |
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; | |
const image_width = root.querySelector('#img2img_image').clientWidth; | |
const target_height = parseInt(image_width * image_scale); | |
document.body.style.setProperty('--height', `${target_height}px`); | |
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; | |
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; | |
return x; | |
} | |
""" | |
with open('./conf/unet/config.json') as f: | |
unet_config = json.load(f) | |
sd_path = "runwayml/stable-diffusion-v1-5" | |
unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained(sd_path, | |
subfolder="unet") | |
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
unet.to(device) | |
text_encoder.to(device) | |
vae.to(device) | |
with Blocks( | |
css=css, | |
analytics_enabled=False, | |
title="LoCo: Locally Constrained Training-free Layout-to-Image Generation", | |
) as demo: | |
description = """<p style="text-align: center; font-weight: bold;"> | |
<span style="font-size: 28px">LoCo: Locally Constrained Training-free Layout-to-Image Generation</span> | |
<br> | |
<span style="font-size: 18px" id="paper-info"> | |
[<a href=" " target="_blank">Project Page</a>] | |
[<a href=" " target="_blank">Paper</a>] | |
[<a href=" " target="_blank">GitHub</a>] | |
</span> | |
</p> | |
""" | |
gr.HTML(description) | |
with gr.Column(): | |
language_instruction = gr.Textbox( | |
label="Text Prompt", | |
) | |
grounding_instruction = gr.Textbox( | |
label="Grounding instruction (Separated by semicolon)", | |
) | |
sketch_pad_trigger = gr.Number(value=0, visible=False) | |
sketch_pad_resize_trigger = gr.Number(value=0, visible=False) | |
init_white_trigger = gr.Number(value=0, visible=False) | |
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False) | |
new_image_trigger = gr.Number(value=0, visible=False) | |
with gr.Row(): | |
sketch_pad = gr.Paint(label="Sketch Pad", elem_id="img2img_image", source='canvas', shape=(512, 512)) | |
# sketch_pad = gr.Image(source='canvas', tool='sketch', size=(512, 512)) | |
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad") | |
out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image") | |
with gr.Row(): | |
clear_btn = gr.Button(value='Clear') | |
gen_btn = gr.Button(value='Generate') | |
with gr.Accordion("Advanced Options", open=False): | |
with gr.Column(): | |
description = """<div class="tooltip">Loss Scale Factor ⓘ | |
<span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span> | |
</div> | |
<div class="tooltip">Guidance Scale ⓘ | |
<span class="tooltiptext">The scale factor of classifier-free guidance. </span> | |
</div> | |
<div class="tooltip" >Max Iteration per Step ⓘ | |
<span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span> | |
</div> | |
<div class="tooltip" >Loss Threshold ⓘ | |
<span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span> | |
</div> | |
<div class="tooltip" >Max Step of Backward Guidance ⓘ | |
<span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span> | |
</div> | |
""" | |
gr.HTML(description) | |
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor") | |
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale") | |
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False) | |
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step") | |
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold") | |
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance") | |
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed") | |
state = gr.State({}) | |
class Controller: | |
def __init__(self): | |
self.calls = 0 | |
self.tracks = 0 | |
self.resizes = 0 | |
self.scales = 0 | |
def init_white(self, init_white_trigger): | |
self.calls += 1 | |
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1 | |
def change_n_samples(self, n_samples): | |
blank_samples = n_samples % 2 if n_samples > 1 else 0 | |
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \ | |
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)] | |
controller = Controller() | |
demo.load( | |
lambda x: x + 1, | |
inputs=sketch_pad_trigger, | |
outputs=sketch_pad_trigger, | |
queue=False) | |
sketch_pad.edit( | |
draw, | |
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state], | |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state], | |
queue=False, | |
) | |
grounding_instruction.change( | |
draw, | |
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state], | |
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state], | |
queue=False, | |
) | |
clear_btn.click( | |
clear, | |
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state], | |
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state], | |
queue=False) | |
sketch_pad_trigger.change( | |
controller.init_white, | |
inputs=[init_white_trigger], | |
outputs=[sketch_pad, image_scale, init_white_trigger], | |
queue=False) | |
gen_btn.click( | |
fn=partial(generate, unet, vae, tokenizer, text_encoder,), | |
inputs=[ | |
language_instruction, grounding_instruction, sketch_pad, | |
loss_threshold, guidance_scale, batch_size, rand_seed, | |
max_step, | |
Loss_scale, max_iter, | |
state, | |
], | |
outputs=[out_gen_1, state], | |
queue=True | |
) | |
sketch_pad_resize_trigger.change( | |
None, | |
None, | |
sketch_pad_resize_trigger, | |
_js=rescale_js, | |
queue=False) | |
init_white_trigger.change( | |
None, | |
None, | |
init_white_trigger, | |
_js=rescale_js, | |
queue=False) | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
[ | |
# "images/input.png", | |
"A hello kitty toy is playing with a purple ball.", | |
"hello kitty;ball", | |
"images/hello_kitty_results.png" | |
], | |
], | |
inputs=[language_instruction, grounding_instruction, out_gen_1], | |
outputs=None, | |
fn=None, | |
cache_examples=False, | |
) | |
description = """<p> The source codes of the demo are modified based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GlIGen</a>. Thanks! </p>""" | |
gr.HTML(description) | |
demo.queue(concurrency_count=1, api_open=False) | |
demo.launch(share=False, show_api=False, show_error=True) | |
if __name__ == '__main__': | |
main() |