Spaces:
Sleeping
Sleeping
# import os | |
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "0" | |
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from functools import partial | |
from copy import deepcopy | |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like | |
import math | |
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo_V2, caculate_loss_LoCo_64, caculate_loss_LoCo | |
class PLMSSampler(object): | |
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None): | |
super().__init__() | |
self.diffusion = diffusion | |
self.model = model | |
self.device = diffusion.betas.device | |
self.ddpm_num_timesteps = diffusion.num_timesteps | |
self.schedule = schedule | |
self.alpha_generator_func = alpha_generator_func | |
self.set_alpha_scale = set_alpha_scale | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
attr = attr.to(self.device) | |
setattr(self, name, attr) | |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False): | |
if ddim_eta != 0: | |
raise ValueError('ddim_eta must be 0 for PLMS') | |
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, | |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) | |
alphas_cumprod = self.diffusion.alphas_cumprod | |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device) | |
self.register_buffer('betas', to_torch(self.diffusion.betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) | |
# ddim sampling parameters | |
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), | |
ddim_timesteps=self.ddim_timesteps, | |
eta=ddim_eta,verbose=verbose) | |
self.register_buffer('ddim_sigmas', ddim_sigmas) | |
self.register_buffer('ddim_alphas', ddim_alphas) | |
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) | |
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) | |
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( | |
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) | |
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) | |
# @torch.no_grad() | |
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'): | |
self.make_schedule(ddim_num_steps=S) | |
# import pdb; pdb.set_trace() | |
return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0, loss_type=loss_type) | |
# @torch.no_grad() | |
def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'): | |
b = shape[0] | |
img = input["x"] | |
if img == None: | |
img = torch.randn(shape, device=self.device) | |
input["x"] = img | |
time_range = np.flip(self.ddim_timesteps) | |
total_steps = self.ddim_timesteps.shape[0] | |
old_eps = [] | |
if self.alpha_generator_func != None: | |
alphas = self.alpha_generator_func(len(time_range)) | |
for i, step in enumerate(time_range): | |
# set alpha and restore first conv layer | |
if self.alpha_generator_func != None: | |
self.set_alpha_scale(self.model, alphas[i]) | |
if alphas[i] == 0: | |
self.model.restore_first_conv_from_SD() | |
# run | |
index = total_steps - i - 1 | |
ts = torch.full((b,), step, device=self.device, dtype=torch.long) | |
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.diffusion.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
input["x"] = img | |
# three loss types | |
if loss_type !=None and loss_type!='standard': | |
if input['object_position'] != []: | |
# if loss_type=='SAR_CAR': | |
# x = self.update_loss_self_cross( input,i, index, ts ) | |
# elif loss_type=='SAR': | |
# x = self.update_only_self( input,i, index, ts ) | |
# elif loss_type=='CAR': | |
# x = self.update_loss_only_cross( input,i, index, ts ) | |
x = self.update_loss_LoCo( input,i, index, ts ) | |
input["x"] = x | |
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next) | |
input["x"] = img | |
old_eps.append(e_t) | |
if len(old_eps) >= 4: | |
old_eps.pop(0) | |
return img | |
# def update_loss_LoCo(self, input,index1, index, ts, type_loss='self_accross'): | |
# # loss_scale = 30 | |
# # max_iter = 5 | |
# #print('time_factor is: ', time_factor) | |
# if index1 < 10: | |
# loss_scale = 8 | |
# max_iter = 5 | |
# elif index1 < 20: | |
# loss_scale = 5 | |
# max_iter = 5 | |
# else: | |
# loss_scale = 1 | |
# max_iter = 1 | |
# loss_threshold = 0.1 | |
# max_index = 30 | |
# x = deepcopy(input["x"]) | |
# iteration = 0 | |
# loss = torch.tensor(10000) | |
# input["timesteps"] = ts | |
# # print("optimize", index1) | |
# self.model.train() | |
# while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) : | |
# # print('iter', iteration) | |
# x = x.requires_grad_(True) | |
# # print('x shape', x.shape) | |
# input['x'] = x | |
# e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input) | |
# bboxes = input['boxes_att'] | |
# object_positions = input['object_position'] | |
# loss2 = caculate_loss_LoCo(att_second,att_first,att_third, bboxes=bboxes, | |
# object_positions=object_positions, t = index1)*loss_scale | |
# # loss = loss2 | |
# # loss.requires_grad_(True) | |
# #print('LoCo loss', loss) | |
# grad_cond = torch.autograd.grad(loss2.requires_grad_(True), [x])[0] | |
# # grad_cond = x.grad | |
# x = x - grad_cond | |
# x = x.detach() | |
# iteration += 1 | |
# torch.cuda.empty_cache() | |
# return x | |
def update_loss_LoCo(self, input,index1, index, ts,type_loss='self_accross'): | |
max_iter = 0 | |
if index1 < 10: | |
loss_scale = 5 | |
max_iter = 5 | |
elif index1 < 20: | |
loss_scale = 3 | |
max_iter = 1 | |
# else: | |
# loss_scale = 1 | |
# max_iter = 1 | |
loss_threshold = 0.1 | |
max_index = 20 | |
x = deepcopy(input["x"]) | |
iteration = 0 | |
loss = torch.tensor(10000) | |
input["timesteps"] = ts | |
print("optimize", index1) | |
self.model.train() | |
# torch.cuda.empty_cache() | |
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) : | |
print('iter', iteration) | |
# import pdb; pdb.set_trace() | |
x = x.requires_grad_(True) | |
input['x'] = x | |
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input) | |
del self_first | |
del self_second | |
del self_third | |
del e_t | |
bboxes = input['boxes_att'] | |
object_positions = input['object_position'] | |
# loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes, | |
# object_positions=object_positions, t = index1)*loss_scale | |
loss2 = caculate_loss_LoCo_V2(att_second,att_first,att_third, bboxes=bboxes, | |
object_positions=object_positions, t = index1)*loss_scale | |
loss = loss2 # + loss1 | |
print('loss', loss, loss2) | |
# hh = torch.autograd.backward(loss, retain_graph=True) | |
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0] | |
del att_first | |
del att_second | |
del att_third | |
# grad_cond = x.grad | |
x = x - grad_cond | |
x = x.detach() | |
iteration += 1 | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
return x | |
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ): | |
if index1 < 10: | |
loss_scale = 4 | |
max_iter = 1 | |
elif index1 < 20: | |
loss_scale = 3 | |
max_iter = 1 | |
else: | |
loss_scale = 1 | |
max_iter = 1 | |
loss_threshold = 0.1 | |
max_index = 30 | |
x = deepcopy(input["x"]) | |
iteration = 0 | |
loss = torch.tensor(10000) | |
input["timesteps"] = ts | |
print("optimize", index1) | |
self.model.train() | |
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) : | |
print('iter', iteration) | |
# import pdb; pdb.set_trace() | |
x = x.requires_grad_(True) | |
input['x'] = x | |
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input) | |
bboxes = input['boxes_att'] | |
object_positions = input['object_position'] | |
loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes, | |
object_positions=object_positions, t = index1)*loss_scale | |
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes, | |
object_positions=object_positions, t = index1)*loss_scale | |
loss = loss1 + loss2 | |
print('loss', loss, loss1, loss2) | |
# hh = torch.autograd.backward(loss, retain_graph=True) | |
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0] | |
# grad_cond = x.grad | |
x = x - grad_cond | |
x = x.detach() | |
iteration += 1 | |
return x | |
def update_loss_only_cross(self, input,index1, index, ts,type_loss='self_accross'): | |
if index1 < 10: | |
loss_scale = 3 | |
max_iter = 5 | |
elif index1 < 20: | |
loss_scale = 2 | |
max_iter = 5 | |
else: | |
loss_scale = 1 | |
max_iter = 1 | |
loss_threshold = 0.1 | |
max_index = 30 | |
x = deepcopy(input["x"]) | |
iteration = 0 | |
loss = torch.tensor(10000) | |
input["timesteps"] = ts | |
print("optimize", index1) | |
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) : | |
print('iter', iteration) | |
x = x.requires_grad_(True) | |
input['x'] = x | |
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input) | |
bboxes = input['boxes'] | |
object_positions = input['object_position'] | |
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes, | |
object_positions=object_positions, t = index1)*loss_scale | |
loss = loss2 | |
print('loss', loss) | |
hh = torch.autograd.backward(loss) | |
grad_cond = x.grad | |
x = x - grad_cond | |
x = x.detach() | |
iteration += 1 | |
torch.cuda.empty_cache() | |
return x | |
def update_only_self(self, input,index1, index, ts,type_loss='self_accross' ): | |
if index1 < 10: | |
loss_scale = 4 | |
max_iter = 5 | |
elif index1 < 20: | |
loss_scale = 3 | |
max_iter = 5 | |
else: | |
loss_scale = 1 | |
max_iter = 1 | |
loss_threshold = 0.1 | |
max_index = 30 | |
x = deepcopy(input["x"]) | |
iteration = 0 | |
loss = torch.tensor(10000) | |
input["timesteps"] = ts | |
print("optimize", index1) | |
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) : | |
print('iter', iteration) | |
x = x.requires_grad_(True) | |
input['x'] = x | |
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input) | |
bboxes = input['boxes'] | |
object_positions = input['object_position'] | |
loss = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes, | |
object_positions=object_positions, t = index1)*loss_scale | |
print('loss', loss) | |
hh = torch.autograd.backward(loss) | |
grad_cond = x.grad | |
x = x - grad_cond | |
x = x.detach() | |
iteration += 1 | |
torch.cuda.empty_cache() | |
return x | |
def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None): | |
x = deepcopy(input["x"]) | |
b = x.shape[0] | |
self.model.eval() | |
def get_model_output(input): | |
e_t, first, second, third,_,_,_ = self.model(input) | |
if uc is not None and guidance_scale != 1: | |
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc, inpainting_extra_input=None, grounding_extra_input=None) | |
# unconditional_input=input | |
e_t_uncond, _, _, _, _, _, _ = self.model( unconditional_input) | |
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond) | |
return e_t | |
def get_x_prev_and_pred_x0(e_t, index): | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device) | |
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device) | |
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device) | |
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device) | |
# current prediction for x_0 | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
# direction pointing to x_t | |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * torch.randn_like(x) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x_prev, pred_x0 | |
input["timesteps"] = t | |
e_t = get_model_output(input) | |
if len(old_eps) == 0: | |
# Pseudo Improved Euler (2nd order) | |
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) | |
input["x"] = x_prev | |
input["timesteps"] = t_next | |
e_t_next = get_model_output(input) | |
e_t_prime = (e_t + e_t_next) / 2 | |
elif len(old_eps) == 1: | |
# 2nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (3 * e_t - old_eps[-1]) / 2 | |
elif len(old_eps) == 2: | |
# 3nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 | |
elif len(old_eps) >= 3: | |
# 4nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 | |
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) | |
return x_prev, pred_x0, e_t | |