Pusheen's picture
Update gligen/ldm/models/diffusion/plms.py
cb81ccc verified
# import os
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "0"
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
import math
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo_V2, caculate_loss_LoCo_64, caculate_loss_LoCo
class PLMSSampler(object):
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
super().__init__()
self.diffusion = diffusion
self.model = model
self.device = diffusion.betas.device
self.ddpm_num_timesteps = diffusion.num_timesteps
self.schedule = schedule
self.alpha_generator_func = alpha_generator_func
self.set_alpha_scale = set_alpha_scale
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
attr = attr.to(self.device)
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
if ddim_eta != 0:
raise ValueError('ddim_eta must be 0 for PLMS')
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
alphas_cumprod = self.diffusion.alphas_cumprod
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
self.register_buffer('betas', to_torch(self.diffusion.betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,verbose=verbose)
self.register_buffer('ddim_sigmas', ddim_sigmas)
self.register_buffer('ddim_alphas', ddim_alphas)
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
# @torch.no_grad()
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):
self.make_schedule(ddim_num_steps=S)
# import pdb; pdb.set_trace()
return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0, loss_type=loss_type)
# @torch.no_grad()
def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):
b = shape[0]
img = input["x"]
if img == None:
img = torch.randn(shape, device=self.device)
input["x"] = img
time_range = np.flip(self.ddim_timesteps)
total_steps = self.ddim_timesteps.shape[0]
old_eps = []
if self.alpha_generator_func != None:
alphas = self.alpha_generator_func(len(time_range))
for i, step in enumerate(time_range):
# set alpha and restore first conv layer
if self.alpha_generator_func != None:
self.set_alpha_scale(self.model, alphas[i])
if alphas[i] == 0:
self.model.restore_first_conv_from_SD()
# run
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)
if mask is not None:
assert x0 is not None
img_orig = self.diffusion.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
input["x"] = img
# three loss types
if loss_type !=None and loss_type!='standard':
if input['object_position'] != []:
# if loss_type=='SAR_CAR':
# x = self.update_loss_self_cross( input,i, index, ts )
# elif loss_type=='SAR':
# x = self.update_only_self( input,i, index, ts )
# elif loss_type=='CAR':
# x = self.update_loss_only_cross( input,i, index, ts )
x = self.update_loss_LoCo( input,i, index, ts )
input["x"] = x
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
input["x"] = img
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
return img
# def update_loss_LoCo(self, input,index1, index, ts, type_loss='self_accross'):
# # loss_scale = 30
# # max_iter = 5
# #print('time_factor is: ', time_factor)
# if index1 < 10:
# loss_scale = 8
# max_iter = 5
# elif index1 < 20:
# loss_scale = 5
# max_iter = 5
# else:
# loss_scale = 1
# max_iter = 1
# loss_threshold = 0.1
# max_index = 30
# x = deepcopy(input["x"])
# iteration = 0
# loss = torch.tensor(10000)
# input["timesteps"] = ts
# # print("optimize", index1)
# self.model.train()
# while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
# # print('iter', iteration)
# x = x.requires_grad_(True)
# # print('x shape', x.shape)
# input['x'] = x
# e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
# bboxes = input['boxes_att']
# object_positions = input['object_position']
# loss2 = caculate_loss_LoCo(att_second,att_first,att_third, bboxes=bboxes,
# object_positions=object_positions, t = index1)*loss_scale
# # loss = loss2
# # loss.requires_grad_(True)
# #print('LoCo loss', loss)
# grad_cond = torch.autograd.grad(loss2.requires_grad_(True), [x])[0]
# # grad_cond = x.grad
# x = x - grad_cond
# x = x.detach()
# iteration += 1
# torch.cuda.empty_cache()
# return x
def update_loss_LoCo(self, input,index1, index, ts,type_loss='self_accross'):
max_iter = 0
if index1 < 10:
loss_scale = 5
max_iter = 5
elif index1 < 20:
loss_scale = 3
max_iter = 1
# else:
# loss_scale = 1
# max_iter = 1
loss_threshold = 0.1
max_index = 20
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
self.model.train()
# torch.cuda.empty_cache()
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
# import pdb; pdb.set_trace()
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
del self_first
del self_second
del self_third
del e_t
bboxes = input['boxes_att']
object_positions = input['object_position']
# loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
# object_positions=object_positions, t = index1)*loss_scale
loss2 = caculate_loss_LoCo_V2(att_second,att_first,att_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss = loss2 # + loss1
print('loss', loss, loss2)
# hh = torch.autograd.backward(loss, retain_graph=True)
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0]
del att_first
del att_second
del att_third
# grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
torch.cuda.empty_cache()
torch.cuda.synchronize()
return x
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
if index1 < 10:
loss_scale = 4
max_iter = 1
elif index1 < 20:
loss_scale = 3
max_iter = 1
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
self.model.train()
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
# import pdb; pdb.set_trace()
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes_att']
object_positions = input['object_position']
loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss = loss1 + loss2
print('loss', loss, loss1, loss2)
# hh = torch.autograd.backward(loss, retain_graph=True)
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0]
# grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
return x
def update_loss_only_cross(self, input,index1, index, ts,type_loss='self_accross'):
if index1 < 10:
loss_scale = 3
max_iter = 5
elif index1 < 20:
loss_scale = 2
max_iter = 5
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes']
object_positions = input['object_position']
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss = loss2
print('loss', loss)
hh = torch.autograd.backward(loss)
grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
torch.cuda.empty_cache()
return x
def update_only_self(self, input,index1, index, ts,type_loss='self_accross' ):
if index1 < 10:
loss_scale = 4
max_iter = 5
elif index1 < 20:
loss_scale = 3
max_iter = 5
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes']
object_positions = input['object_position']
loss = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
print('loss', loss)
hh = torch.autograd.backward(loss)
grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
torch.cuda.empty_cache()
return x
@torch.no_grad()
def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
x = deepcopy(input["x"])
b = x.shape[0]
self.model.eval()
def get_model_output(input):
e_t, first, second, third,_,_,_ = self.model(input)
if uc is not None and guidance_scale != 1:
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc, inpainting_extra_input=None, grounding_extra_input=None)
# unconditional_input=input
e_t_uncond, _, _, _, _, _, _ = self.model( unconditional_input)
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
return e_t
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * torch.randn_like(x)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
input["timesteps"] = t
e_t = get_model_output(input)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
input["x"] = x_prev
input["timesteps"] = t_next
e_t_next = get_model_output(input)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t