Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from ldm.modules.attention import BasicTransformerBlock | |
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder | |
import torch.nn.functional as F | |
class GroundingDownsampler(nn.Module): | |
def __init__(self, out_dim=1): | |
super().__init__() | |
self.out_dim = out_dim | |
# No learnable params for hed edge map, just downsample it with bicubic | |
def forward(self, grounding_extra_input): | |
# this is actually gary scale, but converted to rgb in dataset, information redudant | |
grounding_extra_input = grounding_extra_input[:,0].unsqueeze(1) | |
out = torch.nn.functional.interpolate(grounding_extra_input, (64,64), mode='bicubic') | |
assert out.shape[1] == self.out_dim | |
return out | |