Spaces:
Sleeping
Sleeping
Upload 56 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- dataset/__init__.py +0 -0
- dataset/base_dataset.py +220 -0
- dataset/catalog.py +72 -0
- dataset/cd_dataset.py +250 -0
- dataset/concat_dataset.py +65 -0
- dataset/grounding_dataset.py +205 -0
- dataset/layout_dataset.py +237 -0
- dataset/tsv.py +212 -0
- dataset/tsv_dataset.py +326 -0
- dataset/utils.py +116 -0
- gligen/__init__.py +10 -0
- gligen/create_meta.py +170 -0
- gligen/distributed.py +122 -0
- gligen/evaluator.py +225 -0
- gligen/ldm/__init__.py +3 -0
- gligen/ldm/data/__init__.py +0 -0
- gligen/ldm/data/base.py +23 -0
- gligen/ldm/data/imagenet.py +394 -0
- gligen/ldm/data/imagenet_clsidx_to_label.txt +1000 -0
- gligen/ldm/data/index_synset.yaml +1000 -0
- gligen/ldm/data/lsun.py +92 -0
- gligen/ldm/lr_scheduler.py +98 -0
- gligen/ldm/models/autoencoder.py +52 -0
- gligen/ldm/models/diffusion/__init__.py +0 -0
- gligen/ldm/models/diffusion/classifier.py +267 -0
- gligen/ldm/models/diffusion/ddim.py +134 -0
- gligen/ldm/models/diffusion/ddpm.py +72 -0
- gligen/ldm/models/diffusion/gaussian_smoothing.py +119 -0
- gligen/ldm/models/diffusion/ldm.py +88 -0
- gligen/ldm/models/diffusion/loss.py +685 -0
- gligen/ldm/models/diffusion/plms.py +402 -0
- gligen/ldm/modules/attention.py +387 -0
- gligen/ldm/modules/diffusionmodules/__init__.py +0 -0
- gligen/ldm/modules/diffusionmodules/model.py +835 -0
- gligen/ldm/modules/diffusionmodules/openaimodel.py +489 -0
- gligen/ldm/modules/diffusionmodules/positionnet.py +50 -0
- gligen/ldm/modules/diffusionmodules/positionnet_with_image.py +68 -0
- gligen/ldm/modules/diffusionmodules/util.py +277 -0
- gligen/ldm/modules/distributions/__init__.py +0 -0
- gligen/ldm/modules/distributions/distributions.py +92 -0
- gligen/ldm/modules/ema.py +76 -0
- gligen/ldm/modules/encoders/__init__.py +0 -0
- gligen/ldm/modules/encoders/modules.py +245 -0
- gligen/ldm/modules/encoders/modules_backup.py +234 -0
- gligen/ldm/modules/image_degradation/__init__.py +2 -0
- gligen/ldm/modules/image_degradation/bsrgan.py +730 -0
- gligen/ldm/modules/image_degradation/bsrgan_light.py +650 -0
- gligen/ldm/modules/image_degradation/utils_image.py +916 -0
- gligen/ldm/modules/losses/__init__.py +1 -0
- gligen/ldm/modules/losses/contperceptual.py +111 -0
dataset/__init__.py
ADDED
File without changes
|
dataset/base_dataset.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import torchvision
|
5 |
+
from zipfile import ZipFile
|
6 |
+
import os
|
7 |
+
import multiprocessing
|
8 |
+
import math
|
9 |
+
import numpy as np
|
10 |
+
import random
|
11 |
+
from io import BytesIO
|
12 |
+
|
13 |
+
VALID_IMAGE_TYPES = ['.jpg', '.jpeg', '.tiff', '.bmp', '.png']
|
14 |
+
|
15 |
+
|
16 |
+
def check_filenames_in_zipdata(filenames, ziproot):
|
17 |
+
samples = []
|
18 |
+
for fst in ZipFile(ziproot).infolist():
|
19 |
+
fname = fst.filename
|
20 |
+
if fname.endswith('/') or fname.startswith('.') or fst.file_size == 0:
|
21 |
+
continue
|
22 |
+
if os.path.splitext(fname)[1].lower() in VALID_IMAGE_TYPES:
|
23 |
+
samples.append((fname))
|
24 |
+
filenames = set(filenames)
|
25 |
+
samples = set(samples)
|
26 |
+
assert filenames.issubset(samples), 'Something wrong with your zip data'
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def draw_box(img, boxes):
|
31 |
+
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
|
32 |
+
draw = ImageDraw.Draw(img)
|
33 |
+
for bid, box in enumerate(boxes):
|
34 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline =colors[bid % len(colors)], width=4)
|
35 |
+
# draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
|
36 |
+
return img
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def to_valid(x0, y0, x1, y1, image_size, min_box_size):
|
41 |
+
valid = True
|
42 |
+
|
43 |
+
if x0>image_size or y0>image_size or x1<0 or y1<0:
|
44 |
+
valid = False # no way to make this box vide, it is completely cropped out
|
45 |
+
return valid, (None, None, None, None)
|
46 |
+
|
47 |
+
x0 = max(x0, 0)
|
48 |
+
y0 = max(y0, 0)
|
49 |
+
x1 = min(x1, image_size)
|
50 |
+
y1 = min(y1, image_size)
|
51 |
+
|
52 |
+
if (x1-x0)*(y1-y0) / (image_size*image_size) < min_box_size:
|
53 |
+
valid = False
|
54 |
+
return valid, (None, None, None, None)
|
55 |
+
|
56 |
+
return valid, (x0, y0, x1, y1)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, image_size, min_box_size):
|
63 |
+
"""
|
64 |
+
x,y,w,h: the original annotation corresponding to the raw image size.
|
65 |
+
trans_info: what resizing and cropping have been applied to the raw image
|
66 |
+
image_size: what is the final image size
|
67 |
+
"""
|
68 |
+
|
69 |
+
x0 = x * trans_info["performed_scale"] - trans_info['crop_x']
|
70 |
+
y0 = y * trans_info["performed_scale"] - trans_info['crop_y']
|
71 |
+
x1 = (x + w) * trans_info["performed_scale"] - trans_info['crop_x']
|
72 |
+
y1 = (y + h) * trans_info["performed_scale"] - trans_info['crop_y']
|
73 |
+
|
74 |
+
|
75 |
+
# at this point, box annotation has been recalculated based on scaling and cropping
|
76 |
+
# but some point may fall off the image_size region (e.g., negative value), thus we
|
77 |
+
# need to clamp them into 0-image_size. But if all points falling outsize of image
|
78 |
+
# region, then we will consider this is an invalid box.
|
79 |
+
valid, (x0, y0, x1, y1) = to_valid(x0, y0, x1, y1, image_size, min_box_size)
|
80 |
+
|
81 |
+
if valid:
|
82 |
+
# we also perform random flip.
|
83 |
+
# Here boxes are valid, and are based on image_size
|
84 |
+
if trans_info["performed_flip"]:
|
85 |
+
x0, x1 = image_size-x1, image_size-x0
|
86 |
+
|
87 |
+
return valid, (x0, y0, x1, y1)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
class BaseDataset(torch.utils.data.Dataset):
|
92 |
+
def __init__(self, image_root, random_crop, random_flip, image_size):
|
93 |
+
super().__init__()
|
94 |
+
self.image_root = image_root
|
95 |
+
self.random_crop = random_crop
|
96 |
+
self.random_flip = random_flip
|
97 |
+
self.image_size = image_size
|
98 |
+
self.use_zip = False
|
99 |
+
|
100 |
+
if image_root[-4::] == 'zip':
|
101 |
+
self.use_zip = True
|
102 |
+
self.zip_dict = {}
|
103 |
+
|
104 |
+
if self.random_crop:
|
105 |
+
assert False, 'NOT IMPLEMENTED'
|
106 |
+
|
107 |
+
|
108 |
+
def fetch_zipfile(self, ziproot):
|
109 |
+
pid = multiprocessing.current_process().pid # get pid of this process.
|
110 |
+
if pid not in self.zip_dict:
|
111 |
+
self.zip_dict[pid] = ZipFile(ziproot)
|
112 |
+
zip_file = self.zip_dict[pid]
|
113 |
+
return zip_file
|
114 |
+
|
115 |
+
def fetch_image(self, filename):
|
116 |
+
if self.use_zip:
|
117 |
+
zip_file = self.fetch_zipfile(self.image_root)
|
118 |
+
image = Image.open( BytesIO(zip_file.read(filename)) ).convert('RGB')
|
119 |
+
return image
|
120 |
+
else:
|
121 |
+
image = Image.open( os.path.join(self.image_root,filename) ).convert('RGB')
|
122 |
+
return image
|
123 |
+
|
124 |
+
|
125 |
+
def vis_getitem_data(self, index=None, out=None, return_tensor=False, name="res.jpg", print_caption=True):
|
126 |
+
|
127 |
+
if out is None:
|
128 |
+
out = self[index]
|
129 |
+
|
130 |
+
img = torchvision.transforms.functional.to_pil_image( out["image"]*0.5+0.5 )
|
131 |
+
canvas = torchvision.transforms.functional.to_pil_image( torch.ones_like(out["image"]) )
|
132 |
+
W, H = img.size
|
133 |
+
|
134 |
+
if print_caption:
|
135 |
+
caption = out["caption"]
|
136 |
+
print(caption)
|
137 |
+
print(" ")
|
138 |
+
|
139 |
+
boxes = []
|
140 |
+
for box in out["boxes"]:
|
141 |
+
x0,y0,x1,y1 = box
|
142 |
+
boxes.append( [float(x0*W), float(y0*H), float(x1*W), float(y1*H)] )
|
143 |
+
img = draw_box(img, boxes)
|
144 |
+
|
145 |
+
if return_tensor:
|
146 |
+
return torchvision.transforms.functional.to_tensor(img)
|
147 |
+
else:
|
148 |
+
img.save(name)
|
149 |
+
|
150 |
+
|
151 |
+
def transform_image(self, pil_image):
|
152 |
+
if self.random_crop:
|
153 |
+
assert False
|
154 |
+
arr = random_crop_arr(pil_image, self.image_size)
|
155 |
+
else:
|
156 |
+
arr, info = center_crop_arr(pil_image, self.image_size)
|
157 |
+
|
158 |
+
info["performed_flip"] = False
|
159 |
+
if self.random_flip and random.random()<0.5:
|
160 |
+
arr = arr[:, ::-1]
|
161 |
+
info["performed_flip"] = True
|
162 |
+
|
163 |
+
arr = arr.astype(np.float32) / 127.5 - 1
|
164 |
+
arr = np.transpose(arr, [2,0,1])
|
165 |
+
|
166 |
+
return torch.tensor(arr), info
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
def center_crop_arr(pil_image, image_size):
|
171 |
+
# We are not on a new enough PIL to support the `reducing_gap`
|
172 |
+
# argument, which uses BOX downsampling at powers of two first.
|
173 |
+
# Thus, we do it by hand to improve downsample quality.
|
174 |
+
WW, HH = pil_image.size
|
175 |
+
|
176 |
+
while min(*pil_image.size) >= 2 * image_size:
|
177 |
+
pil_image = pil_image.resize(
|
178 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
179 |
+
)
|
180 |
+
|
181 |
+
scale = image_size / min(*pil_image.size)
|
182 |
+
|
183 |
+
pil_image = pil_image.resize(
|
184 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
185 |
+
)
|
186 |
+
|
187 |
+
# at this point, the min of pil_image side is desired image_size
|
188 |
+
performed_scale = image_size / min(WW, HH)
|
189 |
+
|
190 |
+
arr = np.array(pil_image)
|
191 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
192 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
193 |
+
|
194 |
+
info = {"performed_scale":performed_scale, 'crop_y':crop_y, 'crop_x':crop_x, "WW":WW, 'HH':HH}
|
195 |
+
|
196 |
+
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size], info
|
197 |
+
|
198 |
+
|
199 |
+
def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
|
200 |
+
min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
|
201 |
+
max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
|
202 |
+
smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
|
203 |
+
|
204 |
+
# We are not on a new enough PIL to support the `reducing_gap`
|
205 |
+
# argument, which uses BOX downsampling at powers of two first.
|
206 |
+
# Thus, we do it by hand to improve downsample quality.
|
207 |
+
while min(*pil_image.size) >= 2 * smaller_dim_size:
|
208 |
+
pil_image = pil_image.resize(
|
209 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
210 |
+
)
|
211 |
+
|
212 |
+
scale = smaller_dim_size / min(*pil_image.size)
|
213 |
+
pil_image = pil_image.resize(
|
214 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
215 |
+
)
|
216 |
+
|
217 |
+
arr = np.array(pil_image)
|
218 |
+
crop_y = random.randrange(arr.shape[0] - image_size + 1)
|
219 |
+
crop_x = random.randrange(arr.shape[1] - image_size + 1)
|
220 |
+
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
|
dataset/catalog.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
class DatasetCatalog:
|
4 |
+
def __init__(self, ROOT, which_embedder):
|
5 |
+
assert which_embedder in ['clip', 'bert']
|
6 |
+
|
7 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
8 |
+
|
9 |
+
|
10 |
+
self.VGGrounding = {
|
11 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
12 |
+
"train_params": dict(
|
13 |
+
tsv_path=os.path.join(ROOT,'GROUNDING/gqa/tsv/train-00.tsv'),
|
14 |
+
)
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
19 |
+
|
20 |
+
|
21 |
+
self.FlickrGrounding = {
|
22 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
23 |
+
"train_params":dict(
|
24 |
+
tsv_path=os.path.join(ROOT,'GROUNDING/flickr30k/tsv/train-00.tsv'),
|
25 |
+
)
|
26 |
+
}
|
27 |
+
|
28 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
29 |
+
|
30 |
+
self.SBUGrounding = {
|
31 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
32 |
+
"train_params":dict(
|
33 |
+
tsv_path=os.path.join(ROOT,'GROUNDING/SBU/tsv/train-00.tsv'),
|
34 |
+
)
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
39 |
+
|
40 |
+
|
41 |
+
self.CC3MGrounding = {
|
42 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
43 |
+
"train_params":dict(
|
44 |
+
tsv_path=os.path.join(ROOT,'GROUNDING/CC3M/tsv/train-00.tsv'),
|
45 |
+
)
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
50 |
+
|
51 |
+
|
52 |
+
self.CC12MGrounding = {
|
53 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
54 |
+
"train_params":dict(
|
55 |
+
tsv_path=os.path.join(ROOT,'GROUNDING/CC12M/tsv/train-00.tsv'),
|
56 |
+
)
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
|
61 |
+
|
62 |
+
# temp = 'category_embedding_clip.pth' if which_embedder == 'clip' else 'category_embedding_bert.pth'
|
63 |
+
# obj365_category_embedding_path = os.path.join(ROOT, 'OBJECTS365', temp)
|
64 |
+
|
65 |
+
self.Obj365Detection = {
|
66 |
+
"target": "dataset.tsv_dataset.TSVDataset",
|
67 |
+
"train_params":dict(
|
68 |
+
tsv_path=os.path.join(ROOT,'OBJECTS365/tsv/train-00.tsv'),
|
69 |
+
),
|
70 |
+
}
|
71 |
+
|
72 |
+
|
dataset/cd_dataset.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json, os, random, math
|
2 |
+
from collections import defaultdict
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def not_in_at_all(list1, list2):
|
17 |
+
for a in list1:
|
18 |
+
if a in list2:
|
19 |
+
return False
|
20 |
+
return True
|
21 |
+
|
22 |
+
|
23 |
+
def clean_annotations(annotations):
|
24 |
+
for anno in annotations:
|
25 |
+
anno.pop("segmentation", None)
|
26 |
+
anno.pop("area", None)
|
27 |
+
anno.pop("iscrowd", None)
|
28 |
+
# anno.pop("id", None)
|
29 |
+
|
30 |
+
|
31 |
+
def make_a_sentence(obj_names, clean=False):
|
32 |
+
|
33 |
+
if clean:
|
34 |
+
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
|
35 |
+
|
36 |
+
caption = ""
|
37 |
+
tokens_positive = []
|
38 |
+
for obj_name in obj_names:
|
39 |
+
start_len = len(caption)
|
40 |
+
caption += obj_name
|
41 |
+
end_len = len(caption)
|
42 |
+
caption += ", "
|
43 |
+
tokens_positive.append(
|
44 |
+
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
|
45 |
+
)
|
46 |
+
caption = caption[:-2] # remove last ", "
|
47 |
+
|
48 |
+
return caption #, tokens_positive
|
49 |
+
|
50 |
+
|
51 |
+
def check_all_have_same_images(instances_data, stuff_data, caption_data):
|
52 |
+
if stuff_data is not None:
|
53 |
+
assert instances_data["images"] == stuff_data["images"]
|
54 |
+
if caption_data is not None:
|
55 |
+
assert instances_data["images"] == caption_data["images"]
|
56 |
+
|
57 |
+
|
58 |
+
class CDDataset(BaseDataset):
|
59 |
+
"CD: Caption Detection"
|
60 |
+
def __init__(self,
|
61 |
+
image_root,
|
62 |
+
category_embedding_path,
|
63 |
+
instances_json_path = None,
|
64 |
+
stuff_json_path = None,
|
65 |
+
caption_json_path = None,
|
66 |
+
prob_real_caption = 0,
|
67 |
+
fake_caption_type = 'empty',
|
68 |
+
image_size=256,
|
69 |
+
max_images=None,
|
70 |
+
min_box_size=0.01,
|
71 |
+
max_boxes_per_image=8,
|
72 |
+
include_other=False,
|
73 |
+
random_crop = False,
|
74 |
+
random_flip = True,
|
75 |
+
):
|
76 |
+
super().__init__(random_crop, random_flip, image_size)
|
77 |
+
|
78 |
+
self.image_root = image_root
|
79 |
+
self.category_embedding_path = category_embedding_path
|
80 |
+
self.instances_json_path = instances_json_path
|
81 |
+
self.stuff_json_path = stuff_json_path
|
82 |
+
self.caption_json_path = caption_json_path
|
83 |
+
self.prob_real_caption = prob_real_caption
|
84 |
+
self.fake_caption_type = fake_caption_type
|
85 |
+
self.max_images = max_images
|
86 |
+
self.min_box_size = min_box_size
|
87 |
+
self.max_boxes_per_image = max_boxes_per_image
|
88 |
+
self.include_other = include_other
|
89 |
+
|
90 |
+
|
91 |
+
assert fake_caption_type in ["empty", "made"]
|
92 |
+
if prob_real_caption > 0:
|
93 |
+
assert caption_json_path is not None, "caption json must be given"
|
94 |
+
|
95 |
+
|
96 |
+
# Load all jsons
|
97 |
+
with open(instances_json_path, 'r') as f:
|
98 |
+
instances_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
99 |
+
clean_annotations(instances_data["annotations"])
|
100 |
+
self.instances_data = instances_data
|
101 |
+
|
102 |
+
self.stuff_data = None
|
103 |
+
if stuff_json_path is not None:
|
104 |
+
with open(stuff_json_path, 'r') as f:
|
105 |
+
stuff_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
106 |
+
clean_annotations(stuff_data["annotations"])
|
107 |
+
self.stuff_data = stuff_data
|
108 |
+
|
109 |
+
self.captions_data = None
|
110 |
+
if caption_json_path is not None:
|
111 |
+
with open(caption_json_path, 'r') as f:
|
112 |
+
captions_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
113 |
+
clean_annotations(captions_data["annotations"])
|
114 |
+
self.captions_data = captions_data
|
115 |
+
|
116 |
+
|
117 |
+
# Load preprocessed name embedding
|
118 |
+
self.category_embeddings = torch.load(category_embedding_path)
|
119 |
+
self.embedding_len = list( self.category_embeddings.values() )[0].shape[0]
|
120 |
+
|
121 |
+
|
122 |
+
# Misc
|
123 |
+
self.image_ids = [] # main list for selecting images
|
124 |
+
self.image_id_to_filename = {} # file names used to read image
|
125 |
+
check_all_have_same_images(self.instances_data, self.stuff_data, self.captions_data)
|
126 |
+
for image_data in self.instances_data['images']:
|
127 |
+
image_id = image_data['id']
|
128 |
+
filename = image_data['file_name']
|
129 |
+
self.image_ids.append(image_id)
|
130 |
+
self.image_id_to_filename[image_id] = filename
|
131 |
+
|
132 |
+
|
133 |
+
# All category names (including things and stuff)
|
134 |
+
self.object_idx_to_name = {}
|
135 |
+
for category_data in self.instances_data['categories']:
|
136 |
+
self.object_idx_to_name[category_data['id']] = category_data['name']
|
137 |
+
if self.stuff_data is not None:
|
138 |
+
for category_data in self.stuff_data['categories']:
|
139 |
+
self.object_idx_to_name[category_data['id']] = category_data['name']
|
140 |
+
|
141 |
+
|
142 |
+
# Add object data from instances and stuff
|
143 |
+
self.image_id_to_objects = defaultdict(list)
|
144 |
+
self.select_objects( self.instances_data['annotations'] )
|
145 |
+
if self.stuff_data is not None:
|
146 |
+
self.select_objects( self.stuff_data['annotations'] )
|
147 |
+
|
148 |
+
# Add caption data
|
149 |
+
if self.captions_data is not None:
|
150 |
+
self.image_id_to_captions = defaultdict(list)
|
151 |
+
self.select_captions( self.captions_data['annotations'] )
|
152 |
+
|
153 |
+
# Check if all filenames can be found in the zip file
|
154 |
+
# all_filenames = [self.image_id_to_filename[idx] for idx in self.image_ids]
|
155 |
+
# check_filenames_in_zipdata(all_filenames, image_root)
|
156 |
+
|
157 |
+
|
158 |
+
def select_objects(self, annotations):
|
159 |
+
for object_anno in annotations:
|
160 |
+
image_id = object_anno['image_id']
|
161 |
+
object_name = self.object_idx_to_name[object_anno['category_id']]
|
162 |
+
other_ok = object_name != 'other' or self.include_other
|
163 |
+
if other_ok:
|
164 |
+
self.image_id_to_objects[image_id].append(object_anno)
|
165 |
+
|
166 |
+
|
167 |
+
def select_captions(self, annotations):
|
168 |
+
for caption_data in annotations:
|
169 |
+
image_id = caption_data['image_id']
|
170 |
+
self.image_id_to_captions[image_id].append(caption_data)
|
171 |
+
|
172 |
+
|
173 |
+
def total_images(self):
|
174 |
+
return len(self)
|
175 |
+
|
176 |
+
|
177 |
+
def __getitem__(self, index):
|
178 |
+
if self.max_boxes_per_image > 99:
|
179 |
+
assert False, "Are you sure setting such large number of boxes?"
|
180 |
+
|
181 |
+
out = {}
|
182 |
+
|
183 |
+
image_id = self.image_ids[index]
|
184 |
+
out['id'] = image_id
|
185 |
+
|
186 |
+
# Image
|
187 |
+
filename = self.image_id_to_filename[image_id]
|
188 |
+
image = self.fetch_image(filename)
|
189 |
+
#WW, HH = image.size
|
190 |
+
image_tensor, trans_info = self.transform_image(image)
|
191 |
+
out["image"] = image_tensor
|
192 |
+
|
193 |
+
|
194 |
+
# Select valid boxes after cropping (center or random)
|
195 |
+
this_image_obj_annos = deepcopy(self.image_id_to_objects[image_id])
|
196 |
+
areas = []
|
197 |
+
all_obj_names = []
|
198 |
+
all_boxes = []
|
199 |
+
all_masks = []
|
200 |
+
all_positive_embeddings = []
|
201 |
+
for object_anno in this_image_obj_annos:
|
202 |
+
|
203 |
+
x, y, w, h = object_anno['bbox']
|
204 |
+
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
|
205 |
+
|
206 |
+
if valid:
|
207 |
+
areas.append( (x1-x0)*(y1-y0) )
|
208 |
+
obj_name = self.object_idx_to_name[ object_anno['category_id'] ]
|
209 |
+
all_obj_names.append(obj_name)
|
210 |
+
all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
|
211 |
+
all_masks.append(1)
|
212 |
+
all_positive_embeddings.append( self.category_embeddings[obj_name] )
|
213 |
+
|
214 |
+
wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
|
215 |
+
wanted_idxs = wanted_idxs[0:self.max_boxes_per_image]
|
216 |
+
obj_names = [] # used for making a sentence
|
217 |
+
boxes = torch.zeros(self.max_boxes_per_image, 4)
|
218 |
+
masks = torch.zeros(self.max_boxes_per_image)
|
219 |
+
positive_embeddings = torch.zeros(self.max_boxes_per_image, self.embedding_len)
|
220 |
+
for i, idx in enumerate(wanted_idxs):
|
221 |
+
obj_names.append( all_obj_names[idx] )
|
222 |
+
boxes[i] = all_boxes[idx]
|
223 |
+
masks[i] = all_masks[idx]
|
224 |
+
positive_embeddings[i] = all_positive_embeddings[idx]
|
225 |
+
|
226 |
+
# Caption
|
227 |
+
if random.uniform(0, 1) < self.prob_real_caption:
|
228 |
+
caption_data = self.image_id_to_captions[image_id]
|
229 |
+
idx = random.randint(0, len(caption_data)-1 )
|
230 |
+
caption = caption_data[idx]["caption"]
|
231 |
+
else:
|
232 |
+
if self.fake_caption_type == "empty":
|
233 |
+
caption = ""
|
234 |
+
else:
|
235 |
+
caption = make_a_sentence(obj_names, clean=True)
|
236 |
+
|
237 |
+
|
238 |
+
out["caption"] = caption
|
239 |
+
out["boxes"] = boxes
|
240 |
+
out["masks"] = masks
|
241 |
+
out["positive_embeddings"] = positive_embeddings
|
242 |
+
|
243 |
+
return out
|
244 |
+
|
245 |
+
|
246 |
+
def __len__(self):
|
247 |
+
if self.max_images is None:
|
248 |
+
return len(self.image_ids)
|
249 |
+
return min(len(self.image_ids), self.max_images)
|
250 |
+
|
dataset/concat_dataset.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .catalog import DatasetCatalog
|
2 |
+
from ldm.util import instantiate_from_config
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class ConCatDataset():
|
9 |
+
def __init__(self, dataset_name_list, ROOT, which_embedder, train=True, repeats=None):
|
10 |
+
self.datasets = []
|
11 |
+
cul_previous_dataset_length = 0
|
12 |
+
offset_map = []
|
13 |
+
which_dataset = []
|
14 |
+
|
15 |
+
if repeats is None:
|
16 |
+
repeats = [1] * len(dataset_name_list)
|
17 |
+
else:
|
18 |
+
assert len(repeats) == len(dataset_name_list)
|
19 |
+
|
20 |
+
|
21 |
+
Catalog = DatasetCatalog(ROOT, which_embedder)
|
22 |
+
for dataset_idx, (dataset_name, yaml_params) in enumerate(dataset_name_list.items()):
|
23 |
+
repeat = repeats[dataset_idx]
|
24 |
+
|
25 |
+
dataset_dict = getattr(Catalog, dataset_name)
|
26 |
+
|
27 |
+
target = dataset_dict['target']
|
28 |
+
params = dataset_dict['train_params'] if train else dataset_dict['val_params']
|
29 |
+
if yaml_params is not None:
|
30 |
+
params.update(yaml_params)
|
31 |
+
dataset = instantiate_from_config( dict(target=target, params=params) )
|
32 |
+
|
33 |
+
self.datasets.append(dataset)
|
34 |
+
for _ in range(repeat):
|
35 |
+
offset_map.append( torch.ones(len(dataset))*cul_previous_dataset_length )
|
36 |
+
which_dataset.append( torch.ones(len(dataset))*dataset_idx )
|
37 |
+
cul_previous_dataset_length += len(dataset)
|
38 |
+
offset_map = torch.cat(offset_map, dim=0).long()
|
39 |
+
self.total_length = cul_previous_dataset_length
|
40 |
+
|
41 |
+
self.mapping = torch.arange(self.total_length) - offset_map
|
42 |
+
self.which_dataset = torch.cat(which_dataset, dim=0).long()
|
43 |
+
|
44 |
+
|
45 |
+
def total_images(self):
|
46 |
+
count = 0
|
47 |
+
for dataset in self.datasets:
|
48 |
+
print(dataset.total_images())
|
49 |
+
count += dataset.total_images()
|
50 |
+
return count
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def __getitem__(self, idx):
|
55 |
+
dataset = self.datasets[ self.which_dataset[idx] ]
|
56 |
+
return dataset[ self.mapping[idx] ]
|
57 |
+
|
58 |
+
|
59 |
+
def __len__(self):
|
60 |
+
return self.total_length
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
dataset/grounding_dataset.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tkinter.messagebox import NO
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
from collections import defaultdict
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
from copy import deepcopy
|
7 |
+
import os
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
import torchvision
|
10 |
+
from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
|
11 |
+
from io import BytesIO
|
12 |
+
import random
|
13 |
+
|
14 |
+
def check_unique(images, fields):
|
15 |
+
for field in fields:
|
16 |
+
temp_list = []
|
17 |
+
for img_info in images:
|
18 |
+
temp_list.append(img_info[field])
|
19 |
+
assert len(set(temp_list)) == len(temp_list), field
|
20 |
+
|
21 |
+
def clean_data(data):
|
22 |
+
for data_info in data:
|
23 |
+
data_info.pop("original_img_id", None)
|
24 |
+
data_info.pop("original_id", None)
|
25 |
+
data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
|
26 |
+
data_info.pop("dataset_name", None)
|
27 |
+
data_info.pop("data_source", None)
|
28 |
+
data_info["data_id"] = data_info.pop("id")
|
29 |
+
|
30 |
+
|
31 |
+
def clean_annotations(annotations):
|
32 |
+
for anno_info in annotations:
|
33 |
+
anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
|
34 |
+
anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
|
35 |
+
anno_info.pop("area", None)
|
36 |
+
# anno_info.pop("id", None)
|
37 |
+
anno_info["data_id"] = anno_info.pop("image_id")
|
38 |
+
|
39 |
+
|
40 |
+
def draw_box(img, boxes):
|
41 |
+
draw = ImageDraw.Draw(img)
|
42 |
+
for box in boxes:
|
43 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
|
44 |
+
return img
|
45 |
+
|
46 |
+
|
47 |
+
def xyhw2xyxy(box):
|
48 |
+
x0, y0, w, h = box
|
49 |
+
return [ x0, y0, x0+w, y0+h ]
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
class GroundingDataset(BaseDataset):
|
54 |
+
def __init__(self,
|
55 |
+
image_root,
|
56 |
+
json_path,
|
57 |
+
annotation_embedding_path,
|
58 |
+
prob_real_caption=1,
|
59 |
+
image_size=256,
|
60 |
+
min_box_size=0.01,
|
61 |
+
max_boxes_per_data=8,
|
62 |
+
max_images=None, # set as 30K used to eval
|
63 |
+
random_crop = False,
|
64 |
+
random_flip = True,
|
65 |
+
):
|
66 |
+
super().__init__(image_root, random_crop, random_flip, image_size)
|
67 |
+
self.image_root = image_root
|
68 |
+
self.json_path = json_path
|
69 |
+
self.annotation_embedding_path = annotation_embedding_path
|
70 |
+
self.prob_real_caption = prob_real_caption
|
71 |
+
self.min_box_size = min_box_size
|
72 |
+
self.max_boxes_per_data = max_boxes_per_data
|
73 |
+
self.max_images = max_images
|
74 |
+
|
75 |
+
|
76 |
+
# Load raw data
|
77 |
+
with open(json_path, 'r') as f:
|
78 |
+
json_raw = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
79 |
+
self.data = json_raw["images"] # donot name it images, which is misleading
|
80 |
+
self.annotations = json_raw["annotations"]
|
81 |
+
|
82 |
+
|
83 |
+
# Load preprocessed name embedding
|
84 |
+
if 'bert' in annotation_embedding_path:
|
85 |
+
self.embedding_len = 1280
|
86 |
+
elif 'clip' in annotation_embedding_path:
|
87 |
+
self.embedding_len = 768
|
88 |
+
else:
|
89 |
+
assert False
|
90 |
+
|
91 |
+
|
92 |
+
# clean data and annotation
|
93 |
+
check_unique( self.data, ['id'] )
|
94 |
+
check_unique( self.annotations, ['id'] )
|
95 |
+
clean_data(self.data)
|
96 |
+
clean_annotations(self.annotations)
|
97 |
+
self.data_id_list = [ datum['data_id'] for datum in self.data ]
|
98 |
+
self.data = { datum['data_id']:datum for datum in self.data } # map self.data from a list into a dict
|
99 |
+
|
100 |
+
|
101 |
+
# data point to its annotation mapping
|
102 |
+
self.data_id_to_annos = defaultdict(list)
|
103 |
+
for anno in self.annotations:
|
104 |
+
self.data_id_to_annos[ anno["data_id"] ].append(anno)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# These are not used that offen, but are useful in some cases
|
109 |
+
self.file_names = [] # all training images
|
110 |
+
self.file_name_to_data_ids = defaultdict(list) # for each image, there are multiple data points (captions)
|
111 |
+
for data_id in self.data_id_list:
|
112 |
+
fine_name = self.data[data_id]["file_name"]
|
113 |
+
self.file_names.append(fine_name)
|
114 |
+
self.file_name_to_data_ids[fine_name].append(data_id)
|
115 |
+
self.file_names = list(set(self.file_names))
|
116 |
+
|
117 |
+
|
118 |
+
if self.max_images is not None:
|
119 |
+
"This is only used as COCO2017P evulation, when we set max_images as 30k"
|
120 |
+
assert False, 'I have commented out the following code to save cpu memory'
|
121 |
+
# new_data_id_list = []
|
122 |
+
# new_file_name_to_data_ids = defaultdict(list)
|
123 |
+
# self.file_names = self.file_names[0:self.max_images]
|
124 |
+
# for file_name in self.file_names:
|
125 |
+
# data_id = self.file_name_to_data_ids[file_name][0]
|
126 |
+
# new_data_id_list.append(data_id)
|
127 |
+
# new_file_name_to_data_ids[file_name].append(data_id)
|
128 |
+
# self.data_id_list = new_data_id_list
|
129 |
+
# self.file_name_to_data_ids = new_file_name_to_data_ids
|
130 |
+
|
131 |
+
|
132 |
+
# Check if all filenames can be found in the zip file
|
133 |
+
# all_filenames = [self.data[idx]['file_name'] for idx in self.data_id_list ]
|
134 |
+
# check_filenames_in_zipdata(all_filenames, image_root)
|
135 |
+
|
136 |
+
|
137 |
+
def total_images(self):
|
138 |
+
return len(self.file_names)
|
139 |
+
|
140 |
+
|
141 |
+
def __getitem__(self, index):
|
142 |
+
if self.max_boxes_per_data > 99:
|
143 |
+
assert False, "Are you sure setting such large number of boxes?"
|
144 |
+
|
145 |
+
out = {}
|
146 |
+
|
147 |
+
data_id = self.data_id_list[index]
|
148 |
+
out['id'] = data_id
|
149 |
+
|
150 |
+
|
151 |
+
# Image and caption
|
152 |
+
file_name = self.data[data_id]['file_name']
|
153 |
+
image = self.fetch_image(file_name)
|
154 |
+
image_tensor, trans_info = self.transform_image(image)
|
155 |
+
out["image"] = image_tensor
|
156 |
+
|
157 |
+
if random.uniform(0, 1) < self.prob_real_caption:
|
158 |
+
out["caption"] = self.data[data_id]["caption"]
|
159 |
+
else:
|
160 |
+
out["caption"] = ""
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
annos = deepcopy(self.data_id_to_annos[data_id])
|
165 |
+
areas = []
|
166 |
+
all_boxes = []
|
167 |
+
all_masks = []
|
168 |
+
all_positive_embeddings = []
|
169 |
+
|
170 |
+
|
171 |
+
for anno in annos:
|
172 |
+
|
173 |
+
x, y, w, h = anno['bbox']
|
174 |
+
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
|
175 |
+
|
176 |
+
if valid:
|
177 |
+
areas.append( (x1-x0)*(y1-y0) )
|
178 |
+
all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
|
179 |
+
all_masks.append(1)
|
180 |
+
all_positive_embeddings.append( torch.load(os.path.join(self.annotation_embedding_path,str(anno["id"])), map_location='cpu' ) )
|
181 |
+
|
182 |
+
wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
|
183 |
+
wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
|
184 |
+
|
185 |
+
boxes = torch.zeros(self.max_boxes_per_data, 4)
|
186 |
+
masks = torch.zeros(self.max_boxes_per_data)
|
187 |
+
positive_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
|
188 |
+
for i, idx in enumerate(wanted_idxs):
|
189 |
+
boxes[i] = all_boxes[idx]
|
190 |
+
masks[i] = all_masks[idx]
|
191 |
+
positive_embeddings[i] = all_positive_embeddings[idx]
|
192 |
+
|
193 |
+
|
194 |
+
out["boxes"] = boxes
|
195 |
+
out["masks"] = masks
|
196 |
+
out["positive_embeddings"] = positive_embeddings
|
197 |
+
|
198 |
+
return out
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
return len(self.data_id_list)
|
204 |
+
|
205 |
+
|
dataset/layout_dataset.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json, os, random, math
|
2 |
+
from collections import defaultdict
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image, ImageOps
|
11 |
+
from .base_dataset import BaseDataset, check_filenames_in_zipdata
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def clean_annotations(annotations):
|
18 |
+
for anno in annotations:
|
19 |
+
anno.pop("segmentation", None)
|
20 |
+
anno.pop("area", None)
|
21 |
+
anno.pop("iscrowd", None)
|
22 |
+
anno.pop("id", None)
|
23 |
+
|
24 |
+
|
25 |
+
def make_a_sentence(obj_names, clean=False):
|
26 |
+
|
27 |
+
if clean:
|
28 |
+
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
|
29 |
+
|
30 |
+
caption = ""
|
31 |
+
tokens_positive = []
|
32 |
+
for obj_name in obj_names:
|
33 |
+
start_len = len(caption)
|
34 |
+
caption += obj_name
|
35 |
+
end_len = len(caption)
|
36 |
+
caption += ", "
|
37 |
+
tokens_positive.append(
|
38 |
+
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
|
39 |
+
)
|
40 |
+
caption = caption[:-2] # remove last ", "
|
41 |
+
|
42 |
+
return caption #, tokens_positive
|
43 |
+
|
44 |
+
|
45 |
+
class LayoutDataset(BaseDataset):
|
46 |
+
"""
|
47 |
+
Note: this dataset can somehow be achieved in cd_dataset.CDDataset
|
48 |
+
Since if you donot set prob_real_caption=0 in CDDataset, then that
|
49 |
+
dataset will only use detection annotations. However, in that dataset,
|
50 |
+
we do not remove images but remove boxes.
|
51 |
+
|
52 |
+
However, in layout2img works, people will just resize raw image data into 256*256,
|
53 |
+
thus they pre-calculate box size and apply min_box_size before min/max_boxes_per_image.
|
54 |
+
And then they will remove images if does not follow the rule.
|
55 |
+
|
56 |
+
These two different methods will lead to different number of training/val images.
|
57 |
+
Thus this dataset here is only for layout2img.
|
58 |
+
|
59 |
+
"""
|
60 |
+
def __init__(self,
|
61 |
+
image_root,
|
62 |
+
instances_json_path,
|
63 |
+
stuff_json_path,
|
64 |
+
category_embedding_path,
|
65 |
+
fake_caption_type = 'empty',
|
66 |
+
image_size=256,
|
67 |
+
max_samples=None,
|
68 |
+
min_box_size=0.02,
|
69 |
+
min_boxes_per_image=3,
|
70 |
+
max_boxes_per_image=8,
|
71 |
+
include_other=False,
|
72 |
+
random_flip=True
|
73 |
+
):
|
74 |
+
super().__init__(random_crop=None, random_flip=None, image_size=None) # we only use vis_getitem func in BaseDataset, donot use the others.
|
75 |
+
|
76 |
+
assert fake_caption_type in ['empty', 'made']
|
77 |
+
self.image_root = image_root
|
78 |
+
self.instances_json_path = instances_json_path
|
79 |
+
self.stuff_json_path = stuff_json_path
|
80 |
+
self.category_embedding_path = category_embedding_path
|
81 |
+
self.fake_caption_type = fake_caption_type
|
82 |
+
self.image_size = image_size
|
83 |
+
self.max_samples = max_samples
|
84 |
+
self.min_box_size = min_box_size
|
85 |
+
self.min_boxes_per_image = min_boxes_per_image
|
86 |
+
self.max_boxes_per_image = max_boxes_per_image
|
87 |
+
self.include_other = include_other
|
88 |
+
self.random_flip = random_flip
|
89 |
+
|
90 |
+
|
91 |
+
self.transform = transforms.Compose([transforms.Resize( (image_size, image_size) ),
|
92 |
+
transforms.ToTensor(),
|
93 |
+
transforms.Lambda(lambda t: (t * 2) - 1) ])
|
94 |
+
|
95 |
+
# Load all jsons
|
96 |
+
with open(instances_json_path, 'r') as f:
|
97 |
+
instances_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
98 |
+
clean_annotations(instances_data["annotations"])
|
99 |
+
self.instances_data = instances_data
|
100 |
+
|
101 |
+
with open(stuff_json_path, 'r') as f:
|
102 |
+
stuff_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
|
103 |
+
clean_annotations(stuff_data["annotations"])
|
104 |
+
self.stuff_data = stuff_data
|
105 |
+
|
106 |
+
|
107 |
+
# Load preprocessed name embedding
|
108 |
+
self.category_embeddings = torch.load(category_embedding_path)
|
109 |
+
self.embedding_len = list( self.category_embeddings.values() )[0].shape[0]
|
110 |
+
|
111 |
+
|
112 |
+
# Misc
|
113 |
+
self.image_ids = [] # main list for selecting images
|
114 |
+
self.image_id_to_filename = {} # file names used to read image
|
115 |
+
self.image_id_to_size = {} # original size of this image
|
116 |
+
assert instances_data['images'] == stuff_data["images"]
|
117 |
+
for image_data in instances_data['images']:
|
118 |
+
image_id = image_data['id']
|
119 |
+
filename = image_data['file_name']
|
120 |
+
width = image_data['width']
|
121 |
+
height = image_data['height']
|
122 |
+
self.image_ids.append(image_id)
|
123 |
+
self.image_id_to_filename[image_id] = filename
|
124 |
+
self.image_id_to_size[image_id] = (width, height)
|
125 |
+
|
126 |
+
# All category names (including things and stuff)
|
127 |
+
self.things_id_list = []
|
128 |
+
self.stuff_id_list = []
|
129 |
+
self.object_idx_to_name = {}
|
130 |
+
for category_data in instances_data['categories']:
|
131 |
+
self.things_id_list.append( category_data['id'] )
|
132 |
+
self.object_idx_to_name[category_data['id']] = category_data['name']
|
133 |
+
for category_data in stuff_data['categories']:
|
134 |
+
self.stuff_id_list.append( category_data['id'] )
|
135 |
+
self.object_idx_to_name[category_data['id']] = category_data['name']
|
136 |
+
self.all_categories = [ self.object_idx_to_name.get(k, None) for k in range(183+1) ]
|
137 |
+
|
138 |
+
|
139 |
+
# Add object data from instances and stuff
|
140 |
+
self.image_id_to_objects = defaultdict(list)
|
141 |
+
self.select_objects( instances_data['annotations'] )
|
142 |
+
self.select_objects( stuff_data['annotations'] )
|
143 |
+
|
144 |
+
|
145 |
+
# Prune images that have too few or too many objects
|
146 |
+
new_image_ids = []
|
147 |
+
for image_id in self.image_ids:
|
148 |
+
num_objs = len(self.image_id_to_objects[image_id])
|
149 |
+
if self.min_boxes_per_image <= num_objs <= self.max_boxes_per_image:
|
150 |
+
new_image_ids.append(image_id)
|
151 |
+
self.image_ids = new_image_ids
|
152 |
+
|
153 |
+
|
154 |
+
# Check if all filenames can be found in the zip file
|
155 |
+
all_filenames = [self.image_id_to_filename[idx] for idx in self.image_ids]
|
156 |
+
check_filenames_in_zipdata(all_filenames, image_root)
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
def select_objects(self, annotations):
|
161 |
+
for object_anno in annotations:
|
162 |
+
image_id = object_anno['image_id']
|
163 |
+
_, _, w, h = object_anno['bbox']
|
164 |
+
W, H = self.image_id_to_size[image_id]
|
165 |
+
box_area = (w * h) / (W * H)
|
166 |
+
box_ok = box_area > self.min_box_size
|
167 |
+
object_name = self.object_idx_to_name[object_anno['category_id']]
|
168 |
+
other_ok = object_name != 'other' or self.include_other
|
169 |
+
if box_ok and other_ok:
|
170 |
+
self.image_id_to_objects[image_id].append(object_anno)
|
171 |
+
|
172 |
+
|
173 |
+
def total_images(self):
|
174 |
+
return len(self)
|
175 |
+
|
176 |
+
|
177 |
+
def __getitem__(self, index):
|
178 |
+
if self.max_boxes_per_image > 99:
|
179 |
+
assert False, "Are you sure setting such large number of boxes?"
|
180 |
+
|
181 |
+
out = {}
|
182 |
+
|
183 |
+
image_id = self.image_ids[index]
|
184 |
+
out['id'] = image_id
|
185 |
+
|
186 |
+
flip = self.random_flip and random.random()<0.5
|
187 |
+
|
188 |
+
# Image
|
189 |
+
filename = self.image_id_to_filename[image_id]
|
190 |
+
zip_file = self.fetch_zipfile(self.image_root)
|
191 |
+
image = Image.open(BytesIO(zip_file.read(filename))).convert('RGB')
|
192 |
+
WW, HH = image.size
|
193 |
+
if flip:
|
194 |
+
image = ImageOps.mirror(image)
|
195 |
+
out["image"] = self.transform(image)
|
196 |
+
|
197 |
+
this_image_obj_annos = deepcopy(self.image_id_to_objects[image_id])
|
198 |
+
|
199 |
+
# Make a sentence
|
200 |
+
obj_names = [] # used for make a sentence
|
201 |
+
boxes = torch.zeros(self.max_boxes_per_image, 4)
|
202 |
+
masks = torch.zeros(self.max_boxes_per_image)
|
203 |
+
positive_embeddings = torch.zeros(self.max_boxes_per_image, self.embedding_len)
|
204 |
+
for idx, object_anno in enumerate(this_image_obj_annos):
|
205 |
+
obj_name = self.object_idx_to_name[ object_anno['category_id'] ]
|
206 |
+
obj_names.append(obj_name)
|
207 |
+
x, y, w, h = object_anno['bbox']
|
208 |
+
x0 = x / WW
|
209 |
+
y0 = y / HH
|
210 |
+
x1 = (x + w) / WW
|
211 |
+
y1 = (y + h) / HH
|
212 |
+
if flip:
|
213 |
+
x0, x1 = 1-x1, 1-x0
|
214 |
+
boxes[idx] = torch.tensor([x0,y0,x1,y1])
|
215 |
+
masks[idx] = 1
|
216 |
+
positive_embeddings[idx] = self.category_embeddings[obj_name]
|
217 |
+
|
218 |
+
if self.fake_caption_type == 'empty':
|
219 |
+
caption = ""
|
220 |
+
else:
|
221 |
+
caption = make_a_sentence(obj_names, clean=True)
|
222 |
+
|
223 |
+
out["caption"] = caption
|
224 |
+
out["boxes"] = boxes
|
225 |
+
out["masks"] = masks
|
226 |
+
out["positive_embeddings"] = positive_embeddings
|
227 |
+
|
228 |
+
|
229 |
+
return out
|
230 |
+
|
231 |
+
|
232 |
+
def __len__(self):
|
233 |
+
if self.max_samples is None:
|
234 |
+
return len(self.image_ids)
|
235 |
+
return min(len(self.image_ids), self.max_samples)
|
236 |
+
|
237 |
+
|
dataset/tsv.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as op
|
3 |
+
import gc
|
4 |
+
import json
|
5 |
+
from typing import List
|
6 |
+
import logging
|
7 |
+
|
8 |
+
try:
|
9 |
+
from .blob_storage import BlobStorage, disk_usage
|
10 |
+
except:
|
11 |
+
class BlobStorage:
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
def generate_lineidx(filein: str, idxout: str) -> None:
|
16 |
+
idxout_tmp = idxout + '.tmp'
|
17 |
+
with open(filein, 'r') as tsvin, open(idxout_tmp, 'w') as tsvout:
|
18 |
+
fsize = os.fstat(tsvin.fileno()).st_size
|
19 |
+
fpos = 0
|
20 |
+
while fpos != fsize:
|
21 |
+
tsvout.write(str(fpos) + "\n")
|
22 |
+
tsvin.readline()
|
23 |
+
fpos = tsvin.tell()
|
24 |
+
os.rename(idxout_tmp, idxout)
|
25 |
+
|
26 |
+
|
27 |
+
def read_to_character(fp, c):
|
28 |
+
result = []
|
29 |
+
while True:
|
30 |
+
s = fp.read(32)
|
31 |
+
assert s != ''
|
32 |
+
if c in s:
|
33 |
+
result.append(s[: s.index(c)])
|
34 |
+
break
|
35 |
+
else:
|
36 |
+
result.append(s)
|
37 |
+
return ''.join(result)
|
38 |
+
|
39 |
+
|
40 |
+
class TSVFile(object):
|
41 |
+
def __init__(self,
|
42 |
+
tsv_file: str,
|
43 |
+
if_generate_lineidx: bool = False,
|
44 |
+
lineidx: str = None,
|
45 |
+
class_selector: List[str] = None,
|
46 |
+
blob_storage: BlobStorage = None):
|
47 |
+
self.tsv_file = tsv_file
|
48 |
+
self.lineidx = op.splitext(tsv_file)[0] + '.lineidx' \
|
49 |
+
if not lineidx else lineidx
|
50 |
+
self.linelist = op.splitext(tsv_file)[0] + '.linelist'
|
51 |
+
self.chunks = op.splitext(tsv_file)[0] + '.chunks'
|
52 |
+
self._fp = None
|
53 |
+
self._lineidx = None
|
54 |
+
self._sample_indices = None
|
55 |
+
self._class_boundaries = None
|
56 |
+
self._class_selector = class_selector
|
57 |
+
self._blob_storage = blob_storage
|
58 |
+
self._len = None
|
59 |
+
# the process always keeps the process which opens the file.
|
60 |
+
# If the pid is not equal to the currrent pid, we will re-open the file.
|
61 |
+
self.pid = None
|
62 |
+
# generate lineidx if not exist
|
63 |
+
if not op.isfile(self.lineidx) and if_generate_lineidx:
|
64 |
+
generate_lineidx(self.tsv_file, self.lineidx)
|
65 |
+
|
66 |
+
def __del__(self):
|
67 |
+
self.gcidx()
|
68 |
+
if self._fp:
|
69 |
+
self._fp.close()
|
70 |
+
# physically remove the tsv file if it is retrieved by BlobStorage
|
71 |
+
if self._blob_storage and 'azcopy' in self.tsv_file and os.path.exists(self.tsv_file):
|
72 |
+
try:
|
73 |
+
original_usage = disk_usage('/')
|
74 |
+
os.remove(self.tsv_file)
|
75 |
+
logging.info("Purged %s (disk usage: %.2f%% => %.2f%%)" %
|
76 |
+
(self.tsv_file, original_usage, disk_usage('/') * 100))
|
77 |
+
except:
|
78 |
+
# Known issue: multiple threads attempting to delete the file will raise a FileNotFound error.
|
79 |
+
# TODO: try Threadling.Lock to better handle the race condition
|
80 |
+
pass
|
81 |
+
|
82 |
+
def __str__(self):
|
83 |
+
return "TSVFile(tsv_file='{}')".format(self.tsv_file)
|
84 |
+
|
85 |
+
def __repr__(self):
|
86 |
+
return str(self)
|
87 |
+
|
88 |
+
def gcidx(self):
|
89 |
+
logging.debug('Run gc collect')
|
90 |
+
self._lineidx = None
|
91 |
+
self._sample_indices = None
|
92 |
+
#self._class_boundaries = None
|
93 |
+
return gc.collect()
|
94 |
+
|
95 |
+
def get_class_boundaries(self):
|
96 |
+
return self._class_boundaries
|
97 |
+
|
98 |
+
def num_rows(self, gcf=False):
|
99 |
+
if (self._len is None):
|
100 |
+
self._ensure_lineidx_loaded()
|
101 |
+
retval = len(self._sample_indices)
|
102 |
+
|
103 |
+
if (gcf):
|
104 |
+
self.gcidx()
|
105 |
+
|
106 |
+
self._len = retval
|
107 |
+
|
108 |
+
return self._len
|
109 |
+
|
110 |
+
def seek(self, idx: int):
|
111 |
+
self._ensure_tsv_opened()
|
112 |
+
self._ensure_lineidx_loaded()
|
113 |
+
try:
|
114 |
+
pos = self._lineidx[self._sample_indices[idx]]
|
115 |
+
except:
|
116 |
+
logging.info('=> {}-{}'.format(self.tsv_file, idx))
|
117 |
+
raise
|
118 |
+
self._fp.seek(pos)
|
119 |
+
return [s.strip() for s in self._fp.readline().split('\t')]
|
120 |
+
|
121 |
+
def seek_first_column(self, idx: int):
|
122 |
+
self._ensure_tsv_opened()
|
123 |
+
self._ensure_lineidx_loaded()
|
124 |
+
pos = self._lineidx[idx]
|
125 |
+
self._fp.seek(pos)
|
126 |
+
return read_to_character(self._fp, '\t')
|
127 |
+
|
128 |
+
def get_key(self, idx: int):
|
129 |
+
return self.seek_first_column(idx)
|
130 |
+
|
131 |
+
def __getitem__(self, index: int):
|
132 |
+
return self.seek(index)
|
133 |
+
|
134 |
+
def __len__(self):
|
135 |
+
return self.num_rows()
|
136 |
+
|
137 |
+
def _ensure_lineidx_loaded(self):
|
138 |
+
if self._lineidx is None:
|
139 |
+
logging.debug('=> loading lineidx: {}'.format(self.lineidx))
|
140 |
+
with open(self.lineidx, 'r') as fp:
|
141 |
+
lines = fp.readlines()
|
142 |
+
lines = [line.strip() for line in lines]
|
143 |
+
self._lineidx = [int(line) for line in lines]
|
144 |
+
|
145 |
+
# read the line list if exists
|
146 |
+
linelist = None
|
147 |
+
if op.isfile(self.linelist):
|
148 |
+
with open(self.linelist, 'r') as fp:
|
149 |
+
linelist = sorted(
|
150 |
+
[
|
151 |
+
int(line.strip())
|
152 |
+
for line in fp.readlines()
|
153 |
+
]
|
154 |
+
)
|
155 |
+
|
156 |
+
if op.isfile(self.chunks):
|
157 |
+
self._sample_indices = []
|
158 |
+
self._class_boundaries = []
|
159 |
+
class_boundaries = json.load(open(self.chunks, 'r'))
|
160 |
+
for class_name, boundary in class_boundaries.items():
|
161 |
+
start = len(self._sample_indices)
|
162 |
+
if class_name in self._class_selector:
|
163 |
+
for idx in range(boundary[0], boundary[1] + 1):
|
164 |
+
# NOTE: potentially slow when linelist is long, try to speed it up
|
165 |
+
if linelist and idx not in linelist:
|
166 |
+
continue
|
167 |
+
self._sample_indices.append(idx)
|
168 |
+
end = len(self._sample_indices)
|
169 |
+
self._class_boundaries.append((start, end))
|
170 |
+
else:
|
171 |
+
if linelist:
|
172 |
+
self._sample_indices = linelist
|
173 |
+
else:
|
174 |
+
self._sample_indices = list(range(len(self._lineidx)))
|
175 |
+
|
176 |
+
def _ensure_tsv_opened(self):
|
177 |
+
if self._fp is None:
|
178 |
+
if self._blob_storage:
|
179 |
+
self._fp = self._blob_storage.open(self.tsv_file)
|
180 |
+
else:
|
181 |
+
self._fp = open(self.tsv_file, 'r')
|
182 |
+
self.pid = os.getpid()
|
183 |
+
|
184 |
+
if self.pid != os.getpid():
|
185 |
+
logging.debug('=> re-open {} because the process id changed'.format(self.tsv_file))
|
186 |
+
self._fp = open(self.tsv_file, 'r')
|
187 |
+
self.pid = os.getpid()
|
188 |
+
|
189 |
+
|
190 |
+
class TSVWriter(object):
|
191 |
+
def __init__(self, tsv_file):
|
192 |
+
self.tsv_file = tsv_file
|
193 |
+
self.lineidx_file = op.splitext(tsv_file)[0] + '.lineidx'
|
194 |
+
self.tsv_file_tmp = self.tsv_file + '.tmp'
|
195 |
+
self.lineidx_file_tmp = self.lineidx_file + '.tmp'
|
196 |
+
|
197 |
+
self.tsv_fp = open(self.tsv_file_tmp, 'w')
|
198 |
+
self.lineidx_fp = open(self.lineidx_file_tmp, 'w')
|
199 |
+
|
200 |
+
self.idx = 0
|
201 |
+
|
202 |
+
def write(self, values, sep='\t'):
|
203 |
+
v = '{0}\n'.format(sep.join(map(str, values)))
|
204 |
+
self.tsv_fp.write(v)
|
205 |
+
self.lineidx_fp.write(str(self.idx) + '\n')
|
206 |
+
self.idx = self.idx + len(v)
|
207 |
+
|
208 |
+
def close(self):
|
209 |
+
self.tsv_fp.close()
|
210 |
+
self.lineidx_fp.close()
|
211 |
+
os.rename(self.tsv_file_tmp, self.tsv_file)
|
212 |
+
os.rename(self.lineidx_file_tmp, self.lineidx_file)
|
dataset/tsv_dataset.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tkinter.messagebox import NO
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
from collections import defaultdict
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
from copy import deepcopy
|
7 |
+
import os
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
import torchvision
|
10 |
+
from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
|
11 |
+
from io import BytesIO
|
12 |
+
import random
|
13 |
+
|
14 |
+
from .tsv import TSVFile
|
15 |
+
|
16 |
+
from io import BytesIO
|
17 |
+
import base64
|
18 |
+
from PIL import Image
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
def decode_base64_to_pillow(image_b64):
|
23 |
+
return Image.open(BytesIO(base64.b64decode(image_b64))).convert('RGB')
|
24 |
+
|
25 |
+
def decode_tensor_from_string(arr_str, use_tensor=True):
|
26 |
+
arr = np.frombuffer(base64.b64decode(arr_str), dtype='float32')
|
27 |
+
if use_tensor:
|
28 |
+
arr = torch.from_numpy(arr)
|
29 |
+
return arr
|
30 |
+
|
31 |
+
def decode_item(item):
|
32 |
+
item = json.loads(item)
|
33 |
+
item['image'] = decode_base64_to_pillow(item['image'])
|
34 |
+
|
35 |
+
for anno in item['annos']:
|
36 |
+
anno['image_embedding_before'] = decode_tensor_from_string(anno['image_embedding_before'])
|
37 |
+
anno['text_embedding_before'] = decode_tensor_from_string(anno['text_embedding_before'])
|
38 |
+
anno['image_embedding_after'] = decode_tensor_from_string(anno['image_embedding_after'])
|
39 |
+
anno['text_embedding_after'] = decode_tensor_from_string(anno['text_embedding_after'])
|
40 |
+
return item
|
41 |
+
|
42 |
+
def check_unique(images, fields):
|
43 |
+
for field in fields:
|
44 |
+
temp_list = []
|
45 |
+
for img_info in images:
|
46 |
+
temp_list.append(img_info[field])
|
47 |
+
assert len(set(temp_list)) == len(temp_list), field
|
48 |
+
|
49 |
+
def clean_data(data):
|
50 |
+
for data_info in data:
|
51 |
+
data_info.pop("original_img_id", None)
|
52 |
+
data_info.pop("original_id", None)
|
53 |
+
data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
|
54 |
+
data_info.pop("dataset_name", None)
|
55 |
+
data_info.pop("data_source", None)
|
56 |
+
data_info["data_id"] = data_info.pop("id")
|
57 |
+
|
58 |
+
|
59 |
+
def clean_annotations(annotations):
|
60 |
+
for anno_info in annotations:
|
61 |
+
anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
|
62 |
+
anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
|
63 |
+
anno_info.pop("area", None)
|
64 |
+
# anno_info.pop("id", None)
|
65 |
+
anno_info["data_id"] = anno_info.pop("image_id")
|
66 |
+
|
67 |
+
|
68 |
+
def draw_box(img, boxes):
|
69 |
+
draw = ImageDraw.Draw(img)
|
70 |
+
for box in boxes:
|
71 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
|
72 |
+
return img
|
73 |
+
|
74 |
+
|
75 |
+
def xyhw2xyxy(box):
|
76 |
+
x0, y0, w, h = box
|
77 |
+
return [ x0, y0, x0+w, y0+h ]
|
78 |
+
|
79 |
+
|
80 |
+
def make_a_sentence(obj_names, clean=False):
|
81 |
+
|
82 |
+
if clean:
|
83 |
+
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
|
84 |
+
|
85 |
+
caption = ""
|
86 |
+
tokens_positive = []
|
87 |
+
for obj_name in obj_names:
|
88 |
+
start_len = len(caption)
|
89 |
+
caption += obj_name
|
90 |
+
end_len = len(caption)
|
91 |
+
caption += ", "
|
92 |
+
tokens_positive.append(
|
93 |
+
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
|
94 |
+
)
|
95 |
+
caption = caption[:-2] # remove last ", "
|
96 |
+
|
97 |
+
return caption #, tokens_positive
|
98 |
+
|
99 |
+
|
100 |
+
def mask_for_random_drop_text_or_image_feature(masks, random_drop_embedding):
|
101 |
+
"""
|
102 |
+
input masks tell how many valid grounding tokens for this image
|
103 |
+
e.g., 1,1,1,1,0,0,0,0,0,0...
|
104 |
+
|
105 |
+
If random_drop_embedding=both. we will random drop either image or
|
106 |
+
text feature for each token,
|
107 |
+
but we always make sure there is at least one feature used.
|
108 |
+
In other words, the following masks are not valid
|
109 |
+
(because for the second obj, no feature at all):
|
110 |
+
image: 1,0,1,1,0,0,0,0,0
|
111 |
+
text: 1,0,0,0,0,0,0,0,0
|
112 |
+
|
113 |
+
if random_drop_embedding=image. we will random drop image feature
|
114 |
+
and always keep the text one.
|
115 |
+
|
116 |
+
"""
|
117 |
+
N = masks.shape[0]
|
118 |
+
|
119 |
+
if random_drop_embedding=='both':
|
120 |
+
temp_mask = torch.ones(2,N)
|
121 |
+
for i in range(N):
|
122 |
+
if random.uniform(0, 1) < 0.5: # else keep both features
|
123 |
+
idx = random.sample([0,1], 1)[0] # randomly choose to drop image or text feature
|
124 |
+
temp_mask[idx,i] = 0
|
125 |
+
image_masks = temp_mask[0]*masks
|
126 |
+
text_masks = temp_mask[1]*masks
|
127 |
+
|
128 |
+
if random_drop_embedding=='image':
|
129 |
+
image_masks = masks*(torch.rand(N)>0.5)*1
|
130 |
+
text_masks = masks
|
131 |
+
|
132 |
+
return image_masks, text_masks
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
def project(x, projection_matrix):
|
139 |
+
"""
|
140 |
+
x (Batch*768) should be the penultimate feature of CLIP (before projection)
|
141 |
+
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
|
142 |
+
defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
|
143 |
+
this function will return the CLIP feature (without normalziation)
|
144 |
+
"""
|
145 |
+
return [email protected](projection_matrix, 0, 1)
|
146 |
+
|
147 |
+
|
148 |
+
def inv_project(y, projection_matrix):
|
149 |
+
"""
|
150 |
+
y (Batch*768) should be the CLIP feature (after projection)
|
151 |
+
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
|
152 |
+
defined in CLIP (out_dim, in_dim).
|
153 |
+
this function will return the CLIP penultimate feature.
|
154 |
+
|
155 |
+
Note: to make sure getting the correct penultimate feature, the input y should not be normalized.
|
156 |
+
If it is normalized, then the result will be scaled by CLIP feature norm, which is unknown.
|
157 |
+
"""
|
158 |
+
return [email protected](torch.linalg.inv(projection_matrix), 0, 1)
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
class TSVDataset(BaseDataset):
|
164 |
+
def __init__(self,
|
165 |
+
tsv_path,
|
166 |
+
which_embedder='clip',
|
167 |
+
which_layer=['after','after'], # text and image
|
168 |
+
prob_use_caption=1,
|
169 |
+
random_drop_embedding='none',
|
170 |
+
image_size=256,
|
171 |
+
min_box_size=0.01,
|
172 |
+
max_boxes_per_data=8,
|
173 |
+
max_images=None, # set as 30K used to eval
|
174 |
+
random_crop = False,
|
175 |
+
random_flip = True,
|
176 |
+
):
|
177 |
+
image_root = "a placeholder path as we are using tsv here"
|
178 |
+
super().__init__(image_root, random_crop, random_flip, image_size)
|
179 |
+
self.tsv_path = tsv_path
|
180 |
+
self.which_embedder = which_embedder
|
181 |
+
self.prob_use_caption = prob_use_caption
|
182 |
+
self.random_drop_embedding = random_drop_embedding
|
183 |
+
self.min_box_size = min_box_size
|
184 |
+
self.max_boxes_per_data = max_boxes_per_data
|
185 |
+
self.max_images = max_images
|
186 |
+
|
187 |
+
assert which_layer in [ ['after','after'], ['before','after_renorm'], ['before','after_reproject'] ]
|
188 |
+
assert random_drop_embedding in ['none', 'both', 'image']
|
189 |
+
self.which_layer_text = which_layer[0]
|
190 |
+
self.which_layer_image = which_layer[1]
|
191 |
+
|
192 |
+
#self.projection_matrix = torch.load(os.path.join(os.path.dirname(__file__), 'projection_matrix') )
|
193 |
+
self.projection_matrix = torch.load('projection_matrix.pth')
|
194 |
+
|
195 |
+
# Load tsv data
|
196 |
+
self.tsv_file = TSVFile(self.tsv_path)
|
197 |
+
|
198 |
+
|
199 |
+
# Load preprocessed name embedding
|
200 |
+
if which_embedder == 'bert':
|
201 |
+
self.embedding_len = 1280
|
202 |
+
elif which_embedder == 'clip':
|
203 |
+
self.embedding_len = 768
|
204 |
+
else:
|
205 |
+
assert False
|
206 |
+
|
207 |
+
def total_images(self):
|
208 |
+
return len(self)
|
209 |
+
|
210 |
+
def get_item_from_tsv(self, index):
|
211 |
+
_, item = self.tsv_file[index]
|
212 |
+
item = decode_item(item)
|
213 |
+
return item
|
214 |
+
|
215 |
+
|
216 |
+
def mapping(self, image_embedding):
|
217 |
+
if self.which_layer_image == 'after':
|
218 |
+
# both use CLIP aligned feature
|
219 |
+
return image_embedding
|
220 |
+
elif self.which_layer_image == 'after_renorm':
|
221 |
+
# text use before, but image use after projection but normalize to 28.7
|
222 |
+
return image_embedding*28.7
|
223 |
+
elif self.which_layer_image == 'after_reproject':
|
224 |
+
image_embedding = project( image_embedding.unsqueeze(0), self.projection_matrix.T )
|
225 |
+
image_embedding = image_embedding.squeeze(0)
|
226 |
+
image_embedding = image_embedding / image_embedding.norm()
|
227 |
+
image_embedding = image_embedding * 28.7
|
228 |
+
return image_embedding
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
def __getitem__(self, index):
|
233 |
+
if self.max_boxes_per_data > 99:
|
234 |
+
assert False, "Are you sure setting such large number of boxes?"
|
235 |
+
|
236 |
+
raw_item = self.get_item_from_tsv(index)
|
237 |
+
is_det = raw_item.get('is_det', False) # if it is from detection (such as o365), then we will make a caption
|
238 |
+
|
239 |
+
out = {}
|
240 |
+
|
241 |
+
# -------------------- id and image ------------------- #
|
242 |
+
out['id'] = raw_item['data_id']
|
243 |
+
image = raw_item['image']
|
244 |
+
image_tensor, trans_info = self.transform_image(image)
|
245 |
+
out["image"] = image_tensor
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
# -------------------- grounding token ------------------- #
|
250 |
+
annos = raw_item['annos']
|
251 |
+
|
252 |
+
areas = []
|
253 |
+
all_boxes = []
|
254 |
+
all_masks = []
|
255 |
+
all_text_embeddings = []
|
256 |
+
all_image_embeddings = []
|
257 |
+
if is_det:
|
258 |
+
all_category_names = []
|
259 |
+
|
260 |
+
text_embedding_name = 'text_embedding_before' if self.which_layer_text == 'before' else 'text_embedding_after'
|
261 |
+
image_embedding_name = 'image_embedding_after'
|
262 |
+
|
263 |
+
for anno in annos:
|
264 |
+
x, y, w, h = anno['bbox']
|
265 |
+
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
|
266 |
+
|
267 |
+
if valid:
|
268 |
+
areas.append( (x1-x0)*(y1-y0) )
|
269 |
+
all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
|
270 |
+
all_masks.append(1)
|
271 |
+
all_text_embeddings.append(anno[text_embedding_name])
|
272 |
+
all_image_embeddings.append( self.mapping(anno[image_embedding_name]) )
|
273 |
+
if is_det:
|
274 |
+
all_category_names.append(anno["category_name"])
|
275 |
+
|
276 |
+
|
277 |
+
wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
|
278 |
+
wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
|
279 |
+
|
280 |
+
boxes = torch.zeros(self.max_boxes_per_data, 4)
|
281 |
+
masks = torch.zeros(self.max_boxes_per_data)
|
282 |
+
text_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
|
283 |
+
image_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
|
284 |
+
if is_det:
|
285 |
+
category_names = []
|
286 |
+
for i, idx in enumerate(wanted_idxs):
|
287 |
+
boxes[i] = all_boxes[idx]
|
288 |
+
masks[i] = all_masks[idx]
|
289 |
+
text_embeddings[i] = all_text_embeddings[idx]
|
290 |
+
image_embeddings[i] = all_image_embeddings[idx]
|
291 |
+
if is_det:
|
292 |
+
category_names.append(all_category_names[idx])
|
293 |
+
|
294 |
+
if self.random_drop_embedding != 'none':
|
295 |
+
image_masks, text_masks = mask_for_random_drop_text_or_image_feature(masks, self.random_drop_embedding)
|
296 |
+
else:
|
297 |
+
image_masks = masks
|
298 |
+
text_masks = masks
|
299 |
+
|
300 |
+
|
301 |
+
out["boxes"] = boxes
|
302 |
+
out["masks"] = masks
|
303 |
+
out["image_masks"] = image_masks
|
304 |
+
out["text_masks"] = text_masks
|
305 |
+
out["text_embeddings"] = text_embeddings
|
306 |
+
out["image_embeddings"] = image_embeddings
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
# -------------------- caption ------------------- #
|
311 |
+
if random.uniform(0, 1) < self.prob_use_caption:
|
312 |
+
if is_det:
|
313 |
+
out["caption"] = make_a_sentence(category_names)
|
314 |
+
else:
|
315 |
+
out["caption"] = raw_item["caption"]
|
316 |
+
else:
|
317 |
+
out["caption"] = ""
|
318 |
+
|
319 |
+
return out
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
def __len__(self):
|
324 |
+
return len(self.tsv_file)
|
325 |
+
|
326 |
+
|
dataset/utils.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#
|
3 |
+
# Copyright 2018 Google LLC
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import PIL
|
18 |
+
import torch
|
19 |
+
import torchvision.transforms as T
|
20 |
+
|
21 |
+
|
22 |
+
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
23 |
+
IMAGENET_STD = [0.229, 0.224, 0.225]
|
24 |
+
|
25 |
+
INV_IMAGENET_MEAN = [-m for m in IMAGENET_MEAN]
|
26 |
+
INV_IMAGENET_STD = [1.0 / s for s in IMAGENET_STD]
|
27 |
+
|
28 |
+
|
29 |
+
def imagenet_preprocess():
|
30 |
+
return T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
31 |
+
|
32 |
+
|
33 |
+
def rescale(x):
|
34 |
+
lo, hi = x.min(), x.max()
|
35 |
+
return x.sub(lo).div(hi - lo)
|
36 |
+
|
37 |
+
|
38 |
+
def imagenet_deprocess(rescale_image=True):
|
39 |
+
transforms = [
|
40 |
+
T.Normalize(mean=[0, 0, 0], std=INV_IMAGENET_STD),
|
41 |
+
T.Normalize(mean=INV_IMAGENET_MEAN, std=[1.0, 1.0, 1.0]),
|
42 |
+
]
|
43 |
+
if rescale_image:
|
44 |
+
transforms.append(rescale)
|
45 |
+
return T.Compose(transforms)
|
46 |
+
|
47 |
+
|
48 |
+
def imagenet_deprocess_batch(imgs, rescale=True):
|
49 |
+
"""
|
50 |
+
Input:
|
51 |
+
- imgs: FloatTensor of shape (N, C, H, W) giving preprocessed images
|
52 |
+
|
53 |
+
Output:
|
54 |
+
- imgs_de: ByteTensor of shape (N, C, H, W) giving deprocessed images
|
55 |
+
in the range [0, 255]
|
56 |
+
"""
|
57 |
+
if isinstance(imgs, torch.autograd.Variable):
|
58 |
+
imgs = imgs.data
|
59 |
+
imgs = imgs.cpu().clone()
|
60 |
+
deprocess_fn = imagenet_deprocess(rescale_image=rescale)
|
61 |
+
imgs_de = []
|
62 |
+
for i in range(imgs.size(0)):
|
63 |
+
img_de = deprocess_fn(imgs[i])[None]
|
64 |
+
img_de = img_de.mul(255).clamp(0, 255).byte()
|
65 |
+
imgs_de.append(img_de)
|
66 |
+
imgs_de = torch.cat(imgs_de, dim=0)
|
67 |
+
return imgs_de
|
68 |
+
|
69 |
+
|
70 |
+
class Resize(object):
|
71 |
+
def __init__(self, size, interp=PIL.Image.BILINEAR):
|
72 |
+
if isinstance(size, tuple):
|
73 |
+
H, W = size
|
74 |
+
self.size = (W, H)
|
75 |
+
else:
|
76 |
+
self.size = (size, size)
|
77 |
+
self.interp = interp
|
78 |
+
|
79 |
+
def __call__(self, img):
|
80 |
+
return img.resize(self.size, self.interp)
|
81 |
+
|
82 |
+
|
83 |
+
def unpack_var(v):
|
84 |
+
if isinstance(v, torch.autograd.Variable):
|
85 |
+
return v.data
|
86 |
+
return v
|
87 |
+
|
88 |
+
|
89 |
+
def split_graph_batch(triples, obj_data, obj_to_img, triple_to_img):
|
90 |
+
triples = unpack_var(triples)
|
91 |
+
obj_data = [unpack_var(o) for o in obj_data]
|
92 |
+
obj_to_img = unpack_var(obj_to_img)
|
93 |
+
triple_to_img = unpack_var(triple_to_img)
|
94 |
+
|
95 |
+
triples_out = []
|
96 |
+
obj_data_out = [[] for _ in obj_data]
|
97 |
+
obj_offset = 0
|
98 |
+
N = obj_to_img.max() + 1
|
99 |
+
for i in range(N):
|
100 |
+
o_idxs = (obj_to_img == i).nonzero().view(-1)
|
101 |
+
t_idxs = (triple_to_img == i).nonzero().view(-1)
|
102 |
+
|
103 |
+
cur_triples = triples[t_idxs].clone()
|
104 |
+
cur_triples[:, 0] -= obj_offset
|
105 |
+
cur_triples[:, 2] -= obj_offset
|
106 |
+
triples_out.append(cur_triples)
|
107 |
+
|
108 |
+
for j, o_data in enumerate(obj_data):
|
109 |
+
cur_o_data = None
|
110 |
+
if o_data is not None:
|
111 |
+
cur_o_data = o_data[o_idxs]
|
112 |
+
obj_data_out[j].append(cur_o_data)
|
113 |
+
|
114 |
+
obj_offset += o_idxs.size(0)
|
115 |
+
|
116 |
+
return triples_out, obj_data_out
|
gligen/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os, sys
|
3 |
+
sys.path.append(os.path.dirname(__file__))
|
4 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), "ldm"))
|
5 |
+
|
6 |
+
import gligen.evaluator as evaluator
|
7 |
+
import gligen.trainer as trainer
|
8 |
+
|
9 |
+
|
10 |
+
# import gligen.ldm as ldm
|
gligen/create_meta.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CKPTS = [
|
2 |
+
|
3 |
+
dict(
|
4 |
+
path="/home/chunyl/azure_mount/yuhengdb/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_both/tag01/checkpoint_00450001.pth",
|
5 |
+
feature_type=['before','after_reproject'],
|
6 |
+
save_folder_name="v5b6_drop_both",
|
7 |
+
),
|
8 |
+
|
9 |
+
|
10 |
+
# dict(
|
11 |
+
# path="/home/v-yuhengli/blobfuse/output/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_none/tag00/checkpoint_00165001.pth",
|
12 |
+
# feature_type=['before','after_reproject'],
|
13 |
+
# save_folder_name="v5b6_drop_none",
|
14 |
+
# ),
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# if meta["has_image_mask"] == 0:
|
34 |
+
# image_embeddings = text_embeddings
|
35 |
+
# if meta["has_text_mask"] == 0:
|
36 |
+
# text_embeddings = image_embeddings
|
37 |
+
|
38 |
+
# out = {
|
39 |
+
# "boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
|
40 |
+
# "masks" : masks.unsqueeze(0).repeat(batch,1),
|
41 |
+
# "text_masks" : masks.unsqueeze(0).repeat(batch,1),
|
42 |
+
# "image_masks" : masks.unsqueeze(0).repeat(batch,1),
|
43 |
+
# "text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1),
|
44 |
+
# "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
|
45 |
+
# }
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
META = [
|
54 |
+
|
55 |
+
|
56 |
+
dict(
|
57 |
+
prompt = "a teddy bear sitting next to a red bird",
|
58 |
+
phrases = ['a teddy bear', 'a red bird'],
|
59 |
+
images = ['images/teddy.jpg', 'images/red_bird.jpg'],
|
60 |
+
locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
61 |
+
alpha_type = [1.0, 0, 0.0],
|
62 |
+
has_text_mask = 1,
|
63 |
+
has_image_mask = 0,
|
64 |
+
save_folder_name="teddy_bird_1_1"
|
65 |
+
),
|
66 |
+
|
67 |
+
|
68 |
+
# dict(
|
69 |
+
# prompt = "a teddy bear sitting next to a bird",
|
70 |
+
# phrases = ['a teddy bear', 'a bird'],
|
71 |
+
# images = ['images/teddy.jpg', 'images/red_bird.jpg'],
|
72 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
73 |
+
# alpha_type = [1.0, 0, 0.0],
|
74 |
+
# has_text_mask = 1,
|
75 |
+
# has_image_mask = 1,
|
76 |
+
# save_folder_name="teddy_bird_1_1"
|
77 |
+
# ),
|
78 |
+
|
79 |
+
|
80 |
+
# dict(
|
81 |
+
# prompt = "a teddy bear sitting next to a bird",
|
82 |
+
# phrases = ['a teddy bear', 'a bird'],
|
83 |
+
# images = ['images/teddy.jpg', 'images/red_bird.jpg'],
|
84 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
85 |
+
# alpha_type = [0.5, 0, 0.5],
|
86 |
+
# has_text_mask = 1,
|
87 |
+
# has_image_mask = 0,
|
88 |
+
# save_folder_name="teddy_bird_1_0"
|
89 |
+
# ),
|
90 |
+
|
91 |
+
# dict(
|
92 |
+
# prompt = "",
|
93 |
+
# phrases = ['a teddy bear', 'an umbrella'],
|
94 |
+
# images = ['images/teddy.jpg', 'images/umbrella.png'],
|
95 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
96 |
+
# alpha_type = [1.0, 0, 0.0],
|
97 |
+
# has_text_mask = 1,
|
98 |
+
# has_image_mask = 1,
|
99 |
+
# save_folder_name="empty_teddy_umbrella_1_1"
|
100 |
+
# ),
|
101 |
+
|
102 |
+
# dict(
|
103 |
+
# prompt = "hello kitty and bird hybrid",
|
104 |
+
# phrases = ['a hello kitty', 'a hello kitty'],
|
105 |
+
# images = ['images/red_bird.jpg', 'images/red_bird.jpg'],
|
106 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
107 |
+
# has_text_mask = 1,
|
108 |
+
# has_image_mask = 1,
|
109 |
+
# save_folder_name="hello+bird_1_1"
|
110 |
+
# ),
|
111 |
+
|
112 |
+
# dict(
|
113 |
+
# prompt = "hello kitty and teddy bear hybrid",
|
114 |
+
# phrases = ['a hello kitty', 'a hello kitty'],
|
115 |
+
# images = ['images/teddy.jpg', 'images/teddy.jpg'],
|
116 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
117 |
+
# has_text_mask = 1,
|
118 |
+
# has_image_mask = 1,
|
119 |
+
# save_folder_name="hello+teddy_1_1"
|
120 |
+
# ),
|
121 |
+
|
122 |
+
# dict(
|
123 |
+
# prompt = "bird and hello kitty hybrid",
|
124 |
+
# phrases = ['a bird', 'a bird'],
|
125 |
+
# images = ['images/hello.jpg', 'images/hello.jpg'],
|
126 |
+
# locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
|
127 |
+
# alpha_type = [1.0, 0, 0.0],
|
128 |
+
# has_text_mask = 1,
|
129 |
+
# has_image_mask = 0.5,
|
130 |
+
# save_folder_name="bird+hello_1_1"
|
131 |
+
# ),
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
# dict(
|
136 |
+
# prompt = "a deer standing in front of a brick house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k",
|
137 |
+
# phrases = ['a deer'],
|
138 |
+
# images = ['images/sky.jpg'],
|
139 |
+
# locations = [ [0.0,0.5,0.5,0.9] ],
|
140 |
+
# alpha_type = [1, 0, 0],
|
141 |
+
# has_text_mask = 1,
|
142 |
+
# has_image_mask = 1,
|
143 |
+
# save_folder_name="deer_sky"
|
144 |
+
# ),
|
145 |
+
|
146 |
+
|
147 |
+
# dict(
|
148 |
+
# prompt = "A woman sitting in a restaurant with a slice of pizza in front of her",
|
149 |
+
# phrases = ['dining table', 'pizza', 'person', 'wall', 'car', 'paper', 'chair', 'window', 'bottle', 'cup'],
|
150 |
+
# images = ['images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg'],
|
151 |
+
# locations = [ [0.0030, 0.3589, 1.0000, 1.0000],
|
152 |
+
# [0.0779, 0.6744, 0.9768, 1.0000],
|
153 |
+
# [0.2236, 0.0000, 0.7809, 0.4352],
|
154 |
+
# [0.0000, 0.0000, 0.4313, 0.4505],
|
155 |
+
# [0.6275, 0.1050, 0.9444, 0.2497],
|
156 |
+
# [0.0000, 0.3859, 0.1250, 0.6922],
|
157 |
+
# [0.7137, 0.2389, 0.8540, 0.4549],
|
158 |
+
# [0.0000, 0.0000, 0.4667, 0.0630],
|
159 |
+
# [0.3822, 0.4235, 0.4932, 0.6575],
|
160 |
+
# [0.6616, 0.3617, 0.7880, 0.5165] ],
|
161 |
+
# alpha_type = [0.0, 0, 1.0],
|
162 |
+
# has_text_mask = 1,
|
163 |
+
# has_image_mask = 0,
|
164 |
+
# save_folder_name="pizza_1_0"
|
165 |
+
# ),
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
]
|
gligen/distributed.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import distributed as dist
|
6 |
+
from torch.utils.data.sampler import Sampler
|
7 |
+
|
8 |
+
|
9 |
+
def get_rank():
|
10 |
+
if not dist.is_available():
|
11 |
+
return 0
|
12 |
+
|
13 |
+
if not dist.is_initialized():
|
14 |
+
return 0
|
15 |
+
|
16 |
+
return dist.get_rank()
|
17 |
+
|
18 |
+
|
19 |
+
def synchronize():
|
20 |
+
if not dist.is_available():
|
21 |
+
return
|
22 |
+
if not dist.is_initialized():
|
23 |
+
return
|
24 |
+
|
25 |
+
world_size = dist.get_world_size()
|
26 |
+
if world_size == 1:
|
27 |
+
return
|
28 |
+
|
29 |
+
dist.barrier()
|
30 |
+
|
31 |
+
|
32 |
+
def get_world_size():
|
33 |
+
if not dist.is_available():
|
34 |
+
return 1
|
35 |
+
if not dist.is_initialized():
|
36 |
+
return 1
|
37 |
+
return dist.get_world_size()
|
38 |
+
|
39 |
+
|
40 |
+
def reduce_sum(tensor):
|
41 |
+
if not dist.is_available():
|
42 |
+
return tensor
|
43 |
+
|
44 |
+
if not dist.is_initialized():
|
45 |
+
return tensor
|
46 |
+
|
47 |
+
tensor = tensor.clone()
|
48 |
+
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
|
49 |
+
|
50 |
+
return tensor
|
51 |
+
|
52 |
+
|
53 |
+
def gather_grad(params):
|
54 |
+
world_size = get_world_size()
|
55 |
+
|
56 |
+
if world_size == 1:
|
57 |
+
return
|
58 |
+
|
59 |
+
for param in params:
|
60 |
+
if param.grad is not None:
|
61 |
+
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
|
62 |
+
param.grad.data.div_(world_size)
|
63 |
+
|
64 |
+
|
65 |
+
def all_gather(data):
|
66 |
+
world_size = get_world_size()
|
67 |
+
|
68 |
+
if world_size == 1:
|
69 |
+
return [data]
|
70 |
+
|
71 |
+
buffer = pickle.dumps(data)
|
72 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
73 |
+
tensor = torch.ByteTensor(storage).to('cuda')
|
74 |
+
|
75 |
+
local_size = torch.IntTensor([tensor.numel()]).to('cuda')
|
76 |
+
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
|
77 |
+
dist.all_gather(size_list, local_size)
|
78 |
+
size_list = [int(size.item()) for size in size_list]
|
79 |
+
max_size = max(size_list)
|
80 |
+
|
81 |
+
tensor_list = []
|
82 |
+
for _ in size_list:
|
83 |
+
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
|
84 |
+
|
85 |
+
if local_size != max_size:
|
86 |
+
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
|
87 |
+
tensor = torch.cat((tensor, padding), 0)
|
88 |
+
|
89 |
+
dist.all_gather(tensor_list, tensor)
|
90 |
+
|
91 |
+
data_list = []
|
92 |
+
|
93 |
+
for size, tensor in zip(size_list, tensor_list):
|
94 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
95 |
+
data_list.append(pickle.loads(buffer))
|
96 |
+
|
97 |
+
return data_list
|
98 |
+
|
99 |
+
|
100 |
+
def reduce_loss_dict(loss_dict):
|
101 |
+
world_size = get_world_size()
|
102 |
+
|
103 |
+
if world_size < 2:
|
104 |
+
return loss_dict
|
105 |
+
|
106 |
+
with torch.no_grad():
|
107 |
+
keys = []
|
108 |
+
losses = []
|
109 |
+
|
110 |
+
for k in sorted(loss_dict.keys()):
|
111 |
+
keys.append(k)
|
112 |
+
losses.append(loss_dict[k])
|
113 |
+
|
114 |
+
losses = torch.stack(losses, 0)
|
115 |
+
dist.reduce(losses, dst=0)
|
116 |
+
|
117 |
+
if dist.get_rank() == 0:
|
118 |
+
losses /= world_size
|
119 |
+
|
120 |
+
reduced_losses = {k: v for k, v in zip(keys, losses)}
|
121 |
+
|
122 |
+
return reduced_losses
|
gligen/evaluator.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
3 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
4 |
+
from ldm.util import instantiate_from_config
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from dataset.concat_dataset import ConCatDataset #, collate_fn
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from torch.utils.data.distributed import DistributedSampler
|
10 |
+
import os
|
11 |
+
from tqdm import tqdm
|
12 |
+
from distributed import get_rank, synchronize, get_world_size
|
13 |
+
from trainer import read_official_ckpt, batch_to_device, ImageCaptionSaver, wrap_loader #, get_padded_boxes
|
14 |
+
from PIL import Image
|
15 |
+
import math
|
16 |
+
import json
|
17 |
+
|
18 |
+
|
19 |
+
def draw_masks_from_boxes(boxes,size):
|
20 |
+
|
21 |
+
image_masks = []
|
22 |
+
for box in boxes:
|
23 |
+
image_mask = torch.ones(size[0],size[1])
|
24 |
+
for bx in box:
|
25 |
+
x0, x1 = bx[0]*size[0], bx[2]*size[0]
|
26 |
+
y0, y1 = bx[1]*size[1], bx[3]*size[1]
|
27 |
+
image_mask[int(y0):int(y1), int(x0):int(x1)] = 0
|
28 |
+
image_masks.append(image_mask)
|
29 |
+
return torch.stack(image_masks).unsqueeze(1)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def set_alpha_scale(model, alpha_scale):
|
34 |
+
from ldm.modules.attention import GatedCrossAttentionDense, GatedSelfAttentionDense
|
35 |
+
for module in model.modules():
|
36 |
+
if type(module) == GatedCrossAttentionDense or type(module) == GatedSelfAttentionDense:
|
37 |
+
module.scale = alpha_scale
|
38 |
+
# print("scale: ", alpha_scale)
|
39 |
+
# print("attn: ", module.alpha_attn)
|
40 |
+
# print("dense: ", module.alpha_dense)
|
41 |
+
# print(' ')
|
42 |
+
# print(' ')
|
43 |
+
|
44 |
+
|
45 |
+
def save_images(samples, image_ids, folder, to256):
|
46 |
+
for sample, image_id in zip(samples, image_ids):
|
47 |
+
sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
|
48 |
+
sample = sample.cpu().numpy().transpose(1,2,0) * 255
|
49 |
+
img_name = str(int(image_id))+'.png'
|
50 |
+
img = Image.fromarray(sample.astype(np.uint8))
|
51 |
+
if to256:
|
52 |
+
img = img.resize( (256,256), Image.BICUBIC)
|
53 |
+
img.save(os.path.join(folder,img_name))
|
54 |
+
|
55 |
+
|
56 |
+
def ckpt_to_folder_name(basename):
|
57 |
+
name=""
|
58 |
+
for s in basename:
|
59 |
+
if s.isdigit():
|
60 |
+
name+=s
|
61 |
+
seen = round( int(name)/1000, 1 )
|
62 |
+
return str(seen).ljust(4,'0')+'k'
|
63 |
+
|
64 |
+
|
65 |
+
class Evaluator:
|
66 |
+
def __init__(self, config):
|
67 |
+
|
68 |
+
self.config = config
|
69 |
+
self.device = torch.device("cuda")
|
70 |
+
|
71 |
+
|
72 |
+
# = = = = = create model and diffusion = = = = = #
|
73 |
+
if self.config.ckpt != "real":
|
74 |
+
|
75 |
+
self.model = instantiate_from_config(config.model).to(self.device)
|
76 |
+
self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
|
77 |
+
self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
|
78 |
+
self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
|
79 |
+
|
80 |
+
# donot need to load official_ckpt for self.model here, since we will load from our ckpt
|
81 |
+
state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
|
82 |
+
self.autoencoder.load_state_dict( state_dict["autoencoder"] )
|
83 |
+
self.text_encoder.load_state_dict( state_dict["text_encoder"] )
|
84 |
+
self.diffusion.load_state_dict( state_dict["diffusion"] )
|
85 |
+
|
86 |
+
|
87 |
+
# = = = = = load from our ckpt = = = = = #
|
88 |
+
if self.config.ckpt == "real":
|
89 |
+
print("Saving all real images...")
|
90 |
+
self.just_save_real = True
|
91 |
+
else:
|
92 |
+
checkpoint = torch.load(self.config.ckpt, map_location="cpu")
|
93 |
+
which_state = 'ema' if 'ema' in checkpoint else "model"
|
94 |
+
which_state = which_state if config.which_state is None else config.which_state
|
95 |
+
self.model.load_state_dict(checkpoint[which_state])
|
96 |
+
print("ckpt is loaded")
|
97 |
+
self.just_save_real = False
|
98 |
+
set_alpha_scale(self.model, self.config.alpha_scale)
|
99 |
+
|
100 |
+
self.autoencoder.eval()
|
101 |
+
self.model.eval()
|
102 |
+
self.text_encoder.eval()
|
103 |
+
|
104 |
+
|
105 |
+
# = = = = = create data = = = = = #
|
106 |
+
self.dataset_eval = ConCatDataset(config.val_dataset_names, config.DATA_ROOT, config.which_embedder, train=False)
|
107 |
+
print("total eval images: ", len(self.dataset_eval))
|
108 |
+
sampler = DistributedSampler(self.dataset_eval,shuffle=False) if config.distributed else None
|
109 |
+
loader_eval = DataLoader( self.dataset_eval,batch_size=config.batch_size,
|
110 |
+
num_workers=config.workers,
|
111 |
+
pin_memory=True,
|
112 |
+
sampler=sampler,
|
113 |
+
drop_last=False) # shuffle default is False
|
114 |
+
self.loader_eval = loader_eval
|
115 |
+
|
116 |
+
|
117 |
+
# = = = = = create output folder = = = = = #
|
118 |
+
folder_name = ckpt_to_folder_name(os.path.basename(config.ckpt))
|
119 |
+
self.outdir = os.path.join(config.OUTPUT_ROOT, folder_name)
|
120 |
+
self.outdir_real = os.path.join(self.outdir,'real')
|
121 |
+
self.outdir_fake = os.path.join(self.outdir,'fake')
|
122 |
+
if config.to256:
|
123 |
+
self.outdir_real256 = os.path.join(self.outdir,'real256')
|
124 |
+
self.outdir_fake256 = os.path.join(self.outdir,'fake256')
|
125 |
+
synchronize() # if rank0 is faster, it may mkdir before the other rank call os.listdir()
|
126 |
+
if get_rank() == 0:
|
127 |
+
os.makedirs(self.outdir, exist_ok=True)
|
128 |
+
os.makedirs(self.outdir_real, exist_ok=True)
|
129 |
+
os.makedirs(self.outdir_fake, exist_ok=True)
|
130 |
+
if config.to256:
|
131 |
+
os.makedirs(self.outdir_real256, exist_ok=True)
|
132 |
+
os.makedirs(self.outdir_fake256, exist_ok=True)
|
133 |
+
print(self.outdir) # double check
|
134 |
+
|
135 |
+
self.evaluation_finished = False
|
136 |
+
if os.path.exists( os.path.join(self.outdir,'score.txt') ):
|
137 |
+
self.evaluation_finished = True
|
138 |
+
|
139 |
+
|
140 |
+
def alread_saved_this_batch(self, batch):
|
141 |
+
existing_real_files = os.listdir( self.outdir_real )
|
142 |
+
existing_fake_files = os.listdir( self.outdir_fake )
|
143 |
+
status = []
|
144 |
+
for image_id in batch["id"]:
|
145 |
+
img_name = str(int(image_id))+'.png'
|
146 |
+
status.append(img_name in existing_real_files)
|
147 |
+
status.append(img_name in existing_fake_files)
|
148 |
+
return all(status)
|
149 |
+
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def start_evaluating(self):
|
153 |
+
|
154 |
+
iterator = tqdm( self.loader_eval, desc='Evaluating progress')
|
155 |
+
for batch in iterator:
|
156 |
+
|
157 |
+
#if not self.alread_saved_this_batch(batch):
|
158 |
+
if True:
|
159 |
+
|
160 |
+
batch_to_device(batch, self.device)
|
161 |
+
batch_size = batch["image"].shape[0]
|
162 |
+
samples_real = batch["image"]
|
163 |
+
|
164 |
+
if self.just_save_real:
|
165 |
+
samples_fake = None
|
166 |
+
else:
|
167 |
+
uc = self.text_encoder.encode( batch_size*[""] )
|
168 |
+
context = self.text_encoder.encode( batch["caption"] )
|
169 |
+
|
170 |
+
image_mask = x0 = None
|
171 |
+
if self.config.inpaint:
|
172 |
+
image_mask = draw_masks_from_boxes( batch['boxes'], self.model.image_size ).cuda()
|
173 |
+
x0 = self.autoencoder.encode( batch["image"] )
|
174 |
+
|
175 |
+
shape = (batch_size, self.model.in_channels, self.model.image_size, self.model.image_size)
|
176 |
+
if self.config.no_plms:
|
177 |
+
sampler = DDIMSampler(self.diffusion, self.model)
|
178 |
+
steps = 250
|
179 |
+
else:
|
180 |
+
sampler = PLMSSampler(self.diffusion, self.model)
|
181 |
+
steps = 50
|
182 |
+
|
183 |
+
input = dict( x=None, timesteps=None, context=context, boxes=batch['boxes'], masks=batch['masks'], positive_embeddings=batch["positive_embeddings"] )
|
184 |
+
samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=self.config.guidance_scale, mask=image_mask, x0=x0)
|
185 |
+
samples_fake = self.autoencoder.decode(samples_fake)
|
186 |
+
|
187 |
+
|
188 |
+
save_images(samples_real, batch['id'], self.outdir_real, to256=False )
|
189 |
+
if self.config.to256:
|
190 |
+
save_images(samples_real, batch['id'], self.outdir_real256, to256=True )
|
191 |
+
|
192 |
+
if samples_fake is not None:
|
193 |
+
save_images(samples_fake, batch['id'], self.outdir_fake, to256=False )
|
194 |
+
if self.config.to256:
|
195 |
+
save_images(samples_fake, batch['id'], self.outdir_fake256, to256=True )
|
196 |
+
|
197 |
+
|
198 |
+
def fire_fid(self):
|
199 |
+
paths = [self.outdir_real, self.outdir_fake]
|
200 |
+
if self.config.to256:
|
201 |
+
paths = [self.outdir_real256, self.outdir_fake256]
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
gligen/ldm/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import gligen.evaluator as evaluator
|
2 |
+
import gligen.trainer as trainer
|
3 |
+
import gligen.ldm as ldm
|
gligen/ldm/data/__init__.py
ADDED
File without changes
|
gligen/ldm/data/base.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
3 |
+
|
4 |
+
|
5 |
+
class Txt2ImgIterableBaseDataset(IterableDataset):
|
6 |
+
'''
|
7 |
+
Define an interface to make the IterableDatasets for text2img data chainable
|
8 |
+
'''
|
9 |
+
def __init__(self, num_records=0, valid_ids=None, size=256):
|
10 |
+
super().__init__()
|
11 |
+
self.num_records = num_records
|
12 |
+
self.valid_ids = valid_ids
|
13 |
+
self.sample_ids = valid_ids
|
14 |
+
self.size = size
|
15 |
+
|
16 |
+
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return self.num_records
|
20 |
+
|
21 |
+
@abstractmethod
|
22 |
+
def __iter__(self):
|
23 |
+
pass
|
gligen/ldm/data/imagenet.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
+
import cv2
|
3 |
+
import albumentations
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from functools import partial
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from torch.utils.data import Dataset, Subset
|
12 |
+
|
13 |
+
import taming.data.utils as tdu
|
14 |
+
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
+
from taming.data.imagenet import ImagePaths
|
16 |
+
|
17 |
+
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
+
|
19 |
+
|
20 |
+
def synset2idx(path_to_yaml="ldm/data/index_synset.yaml"):
|
21 |
+
with open(path_to_yaml) as f:
|
22 |
+
di2s = yaml.load(f)
|
23 |
+
return dict((v,k) for k,v in di2s.items())
|
24 |
+
|
25 |
+
|
26 |
+
class ImageNetBase(Dataset):
|
27 |
+
def __init__(self, config=None):
|
28 |
+
self.config = config or OmegaConf.create()
|
29 |
+
if not type(self.config)==dict:
|
30 |
+
self.config = OmegaConf.to_container(self.config)
|
31 |
+
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
+
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
+
self._prepare()
|
34 |
+
self._prepare_synset_to_human()
|
35 |
+
self._prepare_idx_to_synset()
|
36 |
+
self._prepare_human_to_integer_label()
|
37 |
+
self._load()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, i):
|
43 |
+
return self.data[i]
|
44 |
+
|
45 |
+
def _prepare(self):
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def _filter_relpaths(self, relpaths):
|
49 |
+
ignore = set([
|
50 |
+
"n06596364_9591.JPEG",
|
51 |
+
])
|
52 |
+
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
+
if "sub_indices" in self.config:
|
54 |
+
indices = str_to_indices(self.config["sub_indices"])
|
55 |
+
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
+
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
+
files = []
|
58 |
+
for rpath in relpaths:
|
59 |
+
syn = rpath.split("/")[0]
|
60 |
+
if syn in synsets:
|
61 |
+
files.append(rpath)
|
62 |
+
return files
|
63 |
+
else:
|
64 |
+
return relpaths
|
65 |
+
|
66 |
+
def _prepare_synset_to_human(self):
|
67 |
+
SIZE = 2655750
|
68 |
+
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
+
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
+
if (not os.path.exists(self.human_dict) or
|
71 |
+
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
+
download(URL, self.human_dict)
|
73 |
+
|
74 |
+
def _prepare_idx_to_synset(self):
|
75 |
+
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
+
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
+
if (not os.path.exists(self.idx2syn)):
|
78 |
+
download(URL, self.idx2syn)
|
79 |
+
|
80 |
+
def _prepare_human_to_integer_label(self):
|
81 |
+
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
+
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
+
if (not os.path.exists(self.human2integer)):
|
84 |
+
download(URL, self.human2integer)
|
85 |
+
with open(self.human2integer, "r") as f:
|
86 |
+
lines = f.read().splitlines()
|
87 |
+
assert len(lines) == 1000
|
88 |
+
self.human2integer_dict = dict()
|
89 |
+
for line in lines:
|
90 |
+
value, key = line.split(":")
|
91 |
+
self.human2integer_dict[key] = int(value)
|
92 |
+
|
93 |
+
def _load(self):
|
94 |
+
with open(self.txt_filelist, "r") as f:
|
95 |
+
self.relpaths = f.read().splitlines()
|
96 |
+
l1 = len(self.relpaths)
|
97 |
+
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
+
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
+
|
100 |
+
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
+
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
+
|
103 |
+
unique_synsets = np.unique(self.synsets)
|
104 |
+
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
+
if not self.keep_orig_class_label:
|
106 |
+
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
+
else:
|
108 |
+
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
+
|
110 |
+
with open(self.human_dict, "r") as f:
|
111 |
+
human_dict = f.read().splitlines()
|
112 |
+
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
+
|
114 |
+
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
+
|
116 |
+
labels = {
|
117 |
+
"relpath": np.array(self.relpaths),
|
118 |
+
"synsets": np.array(self.synsets),
|
119 |
+
"class_label": np.array(self.class_labels),
|
120 |
+
"human_label": np.array(self.human_labels),
|
121 |
+
}
|
122 |
+
|
123 |
+
if self.process_images:
|
124 |
+
self.size = retrieve(self.config, "size", default=256)
|
125 |
+
self.data = ImagePaths(self.abspaths,
|
126 |
+
labels=labels,
|
127 |
+
size=self.size,
|
128 |
+
random_crop=self.random_crop,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.data = self.abspaths
|
132 |
+
|
133 |
+
|
134 |
+
class ImageNetTrain(ImageNetBase):
|
135 |
+
NAME = "ILSVRC2012_train"
|
136 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
+
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
+
FILES = [
|
139 |
+
"ILSVRC2012_img_train.tar",
|
140 |
+
]
|
141 |
+
SIZES = [
|
142 |
+
147897477120,
|
143 |
+
]
|
144 |
+
|
145 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
+
self.process_images = process_images
|
147 |
+
self.data_root = data_root
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
def _prepare(self):
|
151 |
+
if self.data_root:
|
152 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
+
else:
|
154 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
+
|
157 |
+
self.datadir = os.path.join(self.root, "data")
|
158 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
+
self.expected_length = 1281167
|
160 |
+
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
+
default=True)
|
162 |
+
if not tdu.is_prepared(self.root):
|
163 |
+
# prep
|
164 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
+
|
166 |
+
datadir = self.datadir
|
167 |
+
if not os.path.exists(datadir):
|
168 |
+
path = os.path.join(self.root, self.FILES[0])
|
169 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
+
import academictorrents as at
|
171 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
+
assert atpath == path
|
173 |
+
|
174 |
+
print("Extracting {} to {}".format(path, datadir))
|
175 |
+
os.makedirs(datadir, exist_ok=True)
|
176 |
+
with tarfile.open(path, "r:") as tar:
|
177 |
+
tar.extractall(path=datadir)
|
178 |
+
|
179 |
+
print("Extracting sub-tars.")
|
180 |
+
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
+
for subpath in tqdm(subpaths):
|
182 |
+
subdir = subpath[:-len(".tar")]
|
183 |
+
os.makedirs(subdir, exist_ok=True)
|
184 |
+
with tarfile.open(subpath, "r:") as tar:
|
185 |
+
tar.extractall(path=subdir)
|
186 |
+
|
187 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
+
filelist = sorted(filelist)
|
190 |
+
filelist = "\n".join(filelist)+"\n"
|
191 |
+
with open(self.txt_filelist, "w") as f:
|
192 |
+
f.write(filelist)
|
193 |
+
|
194 |
+
tdu.mark_prepared(self.root)
|
195 |
+
|
196 |
+
|
197 |
+
class ImageNetValidation(ImageNetBase):
|
198 |
+
NAME = "ILSVRC2012_validation"
|
199 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
+
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
+
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
+
FILES = [
|
203 |
+
"ILSVRC2012_img_val.tar",
|
204 |
+
"validation_synset.txt",
|
205 |
+
]
|
206 |
+
SIZES = [
|
207 |
+
6744924160,
|
208 |
+
1950000,
|
209 |
+
]
|
210 |
+
|
211 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
+
self.data_root = data_root
|
213 |
+
self.process_images = process_images
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
def _prepare(self):
|
217 |
+
if self.data_root:
|
218 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
+
else:
|
220 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
+
self.datadir = os.path.join(self.root, "data")
|
223 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
+
self.expected_length = 50000
|
225 |
+
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
+
default=False)
|
227 |
+
if not tdu.is_prepared(self.root):
|
228 |
+
# prep
|
229 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
+
|
231 |
+
datadir = self.datadir
|
232 |
+
if not os.path.exists(datadir):
|
233 |
+
path = os.path.join(self.root, self.FILES[0])
|
234 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
+
import academictorrents as at
|
236 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
+
assert atpath == path
|
238 |
+
|
239 |
+
print("Extracting {} to {}".format(path, datadir))
|
240 |
+
os.makedirs(datadir, exist_ok=True)
|
241 |
+
with tarfile.open(path, "r:") as tar:
|
242 |
+
tar.extractall(path=datadir)
|
243 |
+
|
244 |
+
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
+
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
+
download(self.VS_URL, vspath)
|
247 |
+
|
248 |
+
with open(vspath, "r") as f:
|
249 |
+
synset_dict = f.read().splitlines()
|
250 |
+
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
+
|
252 |
+
print("Reorganizing into synset folders")
|
253 |
+
synsets = np.unique(list(synset_dict.values()))
|
254 |
+
for s in synsets:
|
255 |
+
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
+
for k, v in synset_dict.items():
|
257 |
+
src = os.path.join(datadir, k)
|
258 |
+
dst = os.path.join(datadir, v)
|
259 |
+
shutil.move(src, dst)
|
260 |
+
|
261 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
+
filelist = sorted(filelist)
|
264 |
+
filelist = "\n".join(filelist)+"\n"
|
265 |
+
with open(self.txt_filelist, "w") as f:
|
266 |
+
f.write(filelist)
|
267 |
+
|
268 |
+
tdu.mark_prepared(self.root)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
class ImageNetSR(Dataset):
|
273 |
+
def __init__(self, size=None,
|
274 |
+
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
+
random_crop=True):
|
276 |
+
"""
|
277 |
+
Imagenet Superresolution Dataloader
|
278 |
+
Performs following ops in order:
|
279 |
+
1. crops a crop of size s from image either as random or center crop
|
280 |
+
2. resizes crop to size with cv2.area_interpolation
|
281 |
+
3. degrades resized crop with degradation_fn
|
282 |
+
|
283 |
+
:param size: resizing to size after cropping
|
284 |
+
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
+
:param downscale_f: Low Resolution Downsample factor
|
286 |
+
:param min_crop_f: determines crop size s,
|
287 |
+
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
+
:param max_crop_f: ""
|
289 |
+
:param data_root:
|
290 |
+
:param random_crop:
|
291 |
+
"""
|
292 |
+
self.base = self.get_base()
|
293 |
+
assert size
|
294 |
+
assert (size / downscale_f).is_integer()
|
295 |
+
self.size = size
|
296 |
+
self.LR_size = int(size / downscale_f)
|
297 |
+
self.min_crop_f = min_crop_f
|
298 |
+
self.max_crop_f = max_crop_f
|
299 |
+
assert(max_crop_f <= 1.)
|
300 |
+
self.center_crop = not random_crop
|
301 |
+
|
302 |
+
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
+
|
304 |
+
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
+
|
306 |
+
if degradation == "bsrgan":
|
307 |
+
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
+
|
309 |
+
elif degradation == "bsrgan_light":
|
310 |
+
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
+
|
312 |
+
else:
|
313 |
+
interpolation_fn = {
|
314 |
+
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
+
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
+
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
+
"cv_area": cv2.INTER_AREA,
|
318 |
+
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
+
"pil_nearest": PIL.Image.NEAREST,
|
320 |
+
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
+
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
+
"pil_box": PIL.Image.BOX,
|
323 |
+
"pil_hamming": PIL.Image.HAMMING,
|
324 |
+
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
+
}[degradation]
|
326 |
+
|
327 |
+
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
+
|
329 |
+
if self.pil_interpolation:
|
330 |
+
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
+
|
332 |
+
else:
|
333 |
+
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
+
interpolation=interpolation_fn)
|
335 |
+
|
336 |
+
def __len__(self):
|
337 |
+
return len(self.base)
|
338 |
+
|
339 |
+
def __getitem__(self, i):
|
340 |
+
example = self.base[i]
|
341 |
+
image = Image.open(example["file_path_"])
|
342 |
+
|
343 |
+
if not image.mode == "RGB":
|
344 |
+
image = image.convert("RGB")
|
345 |
+
|
346 |
+
image = np.array(image).astype(np.uint8)
|
347 |
+
|
348 |
+
min_side_len = min(image.shape[:2])
|
349 |
+
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
+
crop_side_len = int(crop_side_len)
|
351 |
+
|
352 |
+
if self.center_crop:
|
353 |
+
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
+
|
355 |
+
else:
|
356 |
+
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
+
|
358 |
+
image = self.cropper(image=image)["image"]
|
359 |
+
image = self.image_rescaler(image=image)["image"]
|
360 |
+
|
361 |
+
if self.pil_interpolation:
|
362 |
+
image_pil = PIL.Image.fromarray(image)
|
363 |
+
LR_image = self.degradation_process(image_pil)
|
364 |
+
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
+
|
366 |
+
else:
|
367 |
+
LR_image = self.degradation_process(image=image)["image"]
|
368 |
+
|
369 |
+
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
+
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
+
|
372 |
+
return example
|
373 |
+
|
374 |
+
|
375 |
+
class ImageNetSRTrain(ImageNetSR):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__(**kwargs)
|
378 |
+
|
379 |
+
def get_base(self):
|
380 |
+
with open("ldm/data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
+
indices = pickle.load(f)
|
382 |
+
dset = ImageNetTrain(process_images=False,)
|
383 |
+
return Subset(dset, indices)
|
384 |
+
|
385 |
+
|
386 |
+
class ImageNetSRValidation(ImageNetSR):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super().__init__(**kwargs)
|
389 |
+
|
390 |
+
def get_base(self):
|
391 |
+
with open("ldm/data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
+
indices = pickle.load(f)
|
393 |
+
dset = ImageNetValidation(process_images=False,)
|
394 |
+
return Subset(dset, indices)
|
gligen/ldm/data/imagenet_clsidx_to_label.txt
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0: 'tench, Tinca tinca',
|
2 |
+
1: 'goldfish, Carassius auratus',
|
3 |
+
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
|
4 |
+
3: 'tiger shark, Galeocerdo cuvieri',
|
5 |
+
4: 'hammerhead, hammerhead shark',
|
6 |
+
5: 'electric ray, crampfish, numbfish, torpedo',
|
7 |
+
6: 'stingray',
|
8 |
+
7: 'cock',
|
9 |
+
8: 'hen',
|
10 |
+
9: 'ostrich, Struthio camelus',
|
11 |
+
10: 'brambling, Fringilla montifringilla',
|
12 |
+
11: 'goldfinch, Carduelis carduelis',
|
13 |
+
12: 'house finch, linnet, Carpodacus mexicanus',
|
14 |
+
13: 'junco, snowbird',
|
15 |
+
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
|
16 |
+
15: 'robin, American robin, Turdus migratorius',
|
17 |
+
16: 'bulbul',
|
18 |
+
17: 'jay',
|
19 |
+
18: 'magpie',
|
20 |
+
19: 'chickadee',
|
21 |
+
20: 'water ouzel, dipper',
|
22 |
+
21: 'kite',
|
23 |
+
22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
|
24 |
+
23: 'vulture',
|
25 |
+
24: 'great grey owl, great gray owl, Strix nebulosa',
|
26 |
+
25: 'European fire salamander, Salamandra salamandra',
|
27 |
+
26: 'common newt, Triturus vulgaris',
|
28 |
+
27: 'eft',
|
29 |
+
28: 'spotted salamander, Ambystoma maculatum',
|
30 |
+
29: 'axolotl, mud puppy, Ambystoma mexicanum',
|
31 |
+
30: 'bullfrog, Rana catesbeiana',
|
32 |
+
31: 'tree frog, tree-frog',
|
33 |
+
32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
|
34 |
+
33: 'loggerhead, loggerhead turtle, Caretta caretta',
|
35 |
+
34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
|
36 |
+
35: 'mud turtle',
|
37 |
+
36: 'terrapin',
|
38 |
+
37: 'box turtle, box tortoise',
|
39 |
+
38: 'banded gecko',
|
40 |
+
39: 'common iguana, iguana, Iguana iguana',
|
41 |
+
40: 'American chameleon, anole, Anolis carolinensis',
|
42 |
+
41: 'whiptail, whiptail lizard',
|
43 |
+
42: 'agama',
|
44 |
+
43: 'frilled lizard, Chlamydosaurus kingi',
|
45 |
+
44: 'alligator lizard',
|
46 |
+
45: 'Gila monster, Heloderma suspectum',
|
47 |
+
46: 'green lizard, Lacerta viridis',
|
48 |
+
47: 'African chameleon, Chamaeleo chamaeleon',
|
49 |
+
48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
|
50 |
+
49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
|
51 |
+
50: 'American alligator, Alligator mississipiensis',
|
52 |
+
51: 'triceratops',
|
53 |
+
52: 'thunder snake, worm snake, Carphophis amoenus',
|
54 |
+
53: 'ringneck snake, ring-necked snake, ring snake',
|
55 |
+
54: 'hognose snake, puff adder, sand viper',
|
56 |
+
55: 'green snake, grass snake',
|
57 |
+
56: 'king snake, kingsnake',
|
58 |
+
57: 'garter snake, grass snake',
|
59 |
+
58: 'water snake',
|
60 |
+
59: 'vine snake',
|
61 |
+
60: 'night snake, Hypsiglena torquata',
|
62 |
+
61: 'boa constrictor, Constrictor constrictor',
|
63 |
+
62: 'rock python, rock snake, Python sebae',
|
64 |
+
63: 'Indian cobra, Naja naja',
|
65 |
+
64: 'green mamba',
|
66 |
+
65: 'sea snake',
|
67 |
+
66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
|
68 |
+
67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
|
69 |
+
68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
|
70 |
+
69: 'trilobite',
|
71 |
+
70: 'harvestman, daddy longlegs, Phalangium opilio',
|
72 |
+
71: 'scorpion',
|
73 |
+
72: 'black and gold garden spider, Argiope aurantia',
|
74 |
+
73: 'barn spider, Araneus cavaticus',
|
75 |
+
74: 'garden spider, Aranea diademata',
|
76 |
+
75: 'black widow, Latrodectus mactans',
|
77 |
+
76: 'tarantula',
|
78 |
+
77: 'wolf spider, hunting spider',
|
79 |
+
78: 'tick',
|
80 |
+
79: 'centipede',
|
81 |
+
80: 'black grouse',
|
82 |
+
81: 'ptarmigan',
|
83 |
+
82: 'ruffed grouse, partridge, Bonasa umbellus',
|
84 |
+
83: 'prairie chicken, prairie grouse, prairie fowl',
|
85 |
+
84: 'peacock',
|
86 |
+
85: 'quail',
|
87 |
+
86: 'partridge',
|
88 |
+
87: 'African grey, African gray, Psittacus erithacus',
|
89 |
+
88: 'macaw',
|
90 |
+
89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
|
91 |
+
90: 'lorikeet',
|
92 |
+
91: 'coucal',
|
93 |
+
92: 'bee eater',
|
94 |
+
93: 'hornbill',
|
95 |
+
94: 'hummingbird',
|
96 |
+
95: 'jacamar',
|
97 |
+
96: 'toucan',
|
98 |
+
97: 'drake',
|
99 |
+
98: 'red-breasted merganser, Mergus serrator',
|
100 |
+
99: 'goose',
|
101 |
+
100: 'black swan, Cygnus atratus',
|
102 |
+
101: 'tusker',
|
103 |
+
102: 'echidna, spiny anteater, anteater',
|
104 |
+
103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
|
105 |
+
104: 'wallaby, brush kangaroo',
|
106 |
+
105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
|
107 |
+
106: 'wombat',
|
108 |
+
107: 'jellyfish',
|
109 |
+
108: 'sea anemone, anemone',
|
110 |
+
109: 'brain coral',
|
111 |
+
110: 'flatworm, platyhelminth',
|
112 |
+
111: 'nematode, nematode worm, roundworm',
|
113 |
+
112: 'conch',
|
114 |
+
113: 'snail',
|
115 |
+
114: 'slug',
|
116 |
+
115: 'sea slug, nudibranch',
|
117 |
+
116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
|
118 |
+
117: 'chambered nautilus, pearly nautilus, nautilus',
|
119 |
+
118: 'Dungeness crab, Cancer magister',
|
120 |
+
119: 'rock crab, Cancer irroratus',
|
121 |
+
120: 'fiddler crab',
|
122 |
+
121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
|
123 |
+
122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
|
124 |
+
123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
|
125 |
+
124: 'crayfish, crawfish, crawdad, crawdaddy',
|
126 |
+
125: 'hermit crab',
|
127 |
+
126: 'isopod',
|
128 |
+
127: 'white stork, Ciconia ciconia',
|
129 |
+
128: 'black stork, Ciconia nigra',
|
130 |
+
129: 'spoonbill',
|
131 |
+
130: 'flamingo',
|
132 |
+
131: 'little blue heron, Egretta caerulea',
|
133 |
+
132: 'American egret, great white heron, Egretta albus',
|
134 |
+
133: 'bittern',
|
135 |
+
134: 'crane',
|
136 |
+
135: 'limpkin, Aramus pictus',
|
137 |
+
136: 'European gallinule, Porphyrio porphyrio',
|
138 |
+
137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
|
139 |
+
138: 'bustard',
|
140 |
+
139: 'ruddy turnstone, Arenaria interpres',
|
141 |
+
140: 'red-backed sandpiper, dunlin, Erolia alpina',
|
142 |
+
141: 'redshank, Tringa totanus',
|
143 |
+
142: 'dowitcher',
|
144 |
+
143: 'oystercatcher, oyster catcher',
|
145 |
+
144: 'pelican',
|
146 |
+
145: 'king penguin, Aptenodytes patagonica',
|
147 |
+
146: 'albatross, mollymawk',
|
148 |
+
147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
|
149 |
+
148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
|
150 |
+
149: 'dugong, Dugong dugon',
|
151 |
+
150: 'sea lion',
|
152 |
+
151: 'Chihuahua',
|
153 |
+
152: 'Japanese spaniel',
|
154 |
+
153: 'Maltese dog, Maltese terrier, Maltese',
|
155 |
+
154: 'Pekinese, Pekingese, Peke',
|
156 |
+
155: 'Shih-Tzu',
|
157 |
+
156: 'Blenheim spaniel',
|
158 |
+
157: 'papillon',
|
159 |
+
158: 'toy terrier',
|
160 |
+
159: 'Rhodesian ridgeback',
|
161 |
+
160: 'Afghan hound, Afghan',
|
162 |
+
161: 'basset, basset hound',
|
163 |
+
162: 'beagle',
|
164 |
+
163: 'bloodhound, sleuthhound',
|
165 |
+
164: 'bluetick',
|
166 |
+
165: 'black-and-tan coonhound',
|
167 |
+
166: 'Walker hound, Walker foxhound',
|
168 |
+
167: 'English foxhound',
|
169 |
+
168: 'redbone',
|
170 |
+
169: 'borzoi, Russian wolfhound',
|
171 |
+
170: 'Irish wolfhound',
|
172 |
+
171: 'Italian greyhound',
|
173 |
+
172: 'whippet',
|
174 |
+
173: 'Ibizan hound, Ibizan Podenco',
|
175 |
+
174: 'Norwegian elkhound, elkhound',
|
176 |
+
175: 'otterhound, otter hound',
|
177 |
+
176: 'Saluki, gazelle hound',
|
178 |
+
177: 'Scottish deerhound, deerhound',
|
179 |
+
178: 'Weimaraner',
|
180 |
+
179: 'Staffordshire bullterrier, Staffordshire bull terrier',
|
181 |
+
180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
|
182 |
+
181: 'Bedlington terrier',
|
183 |
+
182: 'Border terrier',
|
184 |
+
183: 'Kerry blue terrier',
|
185 |
+
184: 'Irish terrier',
|
186 |
+
185: 'Norfolk terrier',
|
187 |
+
186: 'Norwich terrier',
|
188 |
+
187: 'Yorkshire terrier',
|
189 |
+
188: 'wire-haired fox terrier',
|
190 |
+
189: 'Lakeland terrier',
|
191 |
+
190: 'Sealyham terrier, Sealyham',
|
192 |
+
191: 'Airedale, Airedale terrier',
|
193 |
+
192: 'cairn, cairn terrier',
|
194 |
+
193: 'Australian terrier',
|
195 |
+
194: 'Dandie Dinmont, Dandie Dinmont terrier',
|
196 |
+
195: 'Boston bull, Boston terrier',
|
197 |
+
196: 'miniature schnauzer',
|
198 |
+
197: 'giant schnauzer',
|
199 |
+
198: 'standard schnauzer',
|
200 |
+
199: 'Scotch terrier, Scottish terrier, Scottie',
|
201 |
+
200: 'Tibetan terrier, chrysanthemum dog',
|
202 |
+
201: 'silky terrier, Sydney silky',
|
203 |
+
202: 'soft-coated wheaten terrier',
|
204 |
+
203: 'West Highland white terrier',
|
205 |
+
204: 'Lhasa, Lhasa apso',
|
206 |
+
205: 'flat-coated retriever',
|
207 |
+
206: 'curly-coated retriever',
|
208 |
+
207: 'golden retriever',
|
209 |
+
208: 'Labrador retriever',
|
210 |
+
209: 'Chesapeake Bay retriever',
|
211 |
+
210: 'German short-haired pointer',
|
212 |
+
211: 'vizsla, Hungarian pointer',
|
213 |
+
212: 'English setter',
|
214 |
+
213: 'Irish setter, red setter',
|
215 |
+
214: 'Gordon setter',
|
216 |
+
215: 'Brittany spaniel',
|
217 |
+
216: 'clumber, clumber spaniel',
|
218 |
+
217: 'English springer, English springer spaniel',
|
219 |
+
218: 'Welsh springer spaniel',
|
220 |
+
219: 'cocker spaniel, English cocker spaniel, cocker',
|
221 |
+
220: 'Sussex spaniel',
|
222 |
+
221: 'Irish water spaniel',
|
223 |
+
222: 'kuvasz',
|
224 |
+
223: 'schipperke',
|
225 |
+
224: 'groenendael',
|
226 |
+
225: 'malinois',
|
227 |
+
226: 'briard',
|
228 |
+
227: 'kelpie',
|
229 |
+
228: 'komondor',
|
230 |
+
229: 'Old English sheepdog, bobtail',
|
231 |
+
230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
|
232 |
+
231: 'collie',
|
233 |
+
232: 'Border collie',
|
234 |
+
233: 'Bouvier des Flandres, Bouviers des Flandres',
|
235 |
+
234: 'Rottweiler',
|
236 |
+
235: 'German shepherd, German shepherd dog, German police dog, alsatian',
|
237 |
+
236: 'Doberman, Doberman pinscher',
|
238 |
+
237: 'miniature pinscher',
|
239 |
+
238: 'Greater Swiss Mountain dog',
|
240 |
+
239: 'Bernese mountain dog',
|
241 |
+
240: 'Appenzeller',
|
242 |
+
241: 'EntleBucher',
|
243 |
+
242: 'boxer',
|
244 |
+
243: 'bull mastiff',
|
245 |
+
244: 'Tibetan mastiff',
|
246 |
+
245: 'French bulldog',
|
247 |
+
246: 'Great Dane',
|
248 |
+
247: 'Saint Bernard, St Bernard',
|
249 |
+
248: 'Eskimo dog, husky',
|
250 |
+
249: 'malamute, malemute, Alaskan malamute',
|
251 |
+
250: 'Siberian husky',
|
252 |
+
251: 'dalmatian, coach dog, carriage dog',
|
253 |
+
252: 'affenpinscher, monkey pinscher, monkey dog',
|
254 |
+
253: 'basenji',
|
255 |
+
254: 'pug, pug-dog',
|
256 |
+
255: 'Leonberg',
|
257 |
+
256: 'Newfoundland, Newfoundland dog',
|
258 |
+
257: 'Great Pyrenees',
|
259 |
+
258: 'Samoyed, Samoyede',
|
260 |
+
259: 'Pomeranian',
|
261 |
+
260: 'chow, chow chow',
|
262 |
+
261: 'keeshond',
|
263 |
+
262: 'Brabancon griffon',
|
264 |
+
263: 'Pembroke, Pembroke Welsh corgi',
|
265 |
+
264: 'Cardigan, Cardigan Welsh corgi',
|
266 |
+
265: 'toy poodle',
|
267 |
+
266: 'miniature poodle',
|
268 |
+
267: 'standard poodle',
|
269 |
+
268: 'Mexican hairless',
|
270 |
+
269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
|
271 |
+
270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
|
272 |
+
271: 'red wolf, maned wolf, Canis rufus, Canis niger',
|
273 |
+
272: 'coyote, prairie wolf, brush wolf, Canis latrans',
|
274 |
+
273: 'dingo, warrigal, warragal, Canis dingo',
|
275 |
+
274: 'dhole, Cuon alpinus',
|
276 |
+
275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
|
277 |
+
276: 'hyena, hyaena',
|
278 |
+
277: 'red fox, Vulpes vulpes',
|
279 |
+
278: 'kit fox, Vulpes macrotis',
|
280 |
+
279: 'Arctic fox, white fox, Alopex lagopus',
|
281 |
+
280: 'grey fox, gray fox, Urocyon cinereoargenteus',
|
282 |
+
281: 'tabby, tabby cat',
|
283 |
+
282: 'tiger cat',
|
284 |
+
283: 'Persian cat',
|
285 |
+
284: 'Siamese cat, Siamese',
|
286 |
+
285: 'Egyptian cat',
|
287 |
+
286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
|
288 |
+
287: 'lynx, catamount',
|
289 |
+
288: 'leopard, Panthera pardus',
|
290 |
+
289: 'snow leopard, ounce, Panthera uncia',
|
291 |
+
290: 'jaguar, panther, Panthera onca, Felis onca',
|
292 |
+
291: 'lion, king of beasts, Panthera leo',
|
293 |
+
292: 'tiger, Panthera tigris',
|
294 |
+
293: 'cheetah, chetah, Acinonyx jubatus',
|
295 |
+
294: 'brown bear, bruin, Ursus arctos',
|
296 |
+
295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
|
297 |
+
296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
|
298 |
+
297: 'sloth bear, Melursus ursinus, Ursus ursinus',
|
299 |
+
298: 'mongoose',
|
300 |
+
299: 'meerkat, mierkat',
|
301 |
+
300: 'tiger beetle',
|
302 |
+
301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
|
303 |
+
302: 'ground beetle, carabid beetle',
|
304 |
+
303: 'long-horned beetle, longicorn, longicorn beetle',
|
305 |
+
304: 'leaf beetle, chrysomelid',
|
306 |
+
305: 'dung beetle',
|
307 |
+
306: 'rhinoceros beetle',
|
308 |
+
307: 'weevil',
|
309 |
+
308: 'fly',
|
310 |
+
309: 'bee',
|
311 |
+
310: 'ant, emmet, pismire',
|
312 |
+
311: 'grasshopper, hopper',
|
313 |
+
312: 'cricket',
|
314 |
+
313: 'walking stick, walkingstick, stick insect',
|
315 |
+
314: 'cockroach, roach',
|
316 |
+
315: 'mantis, mantid',
|
317 |
+
316: 'cicada, cicala',
|
318 |
+
317: 'leafhopper',
|
319 |
+
318: 'lacewing, lacewing fly',
|
320 |
+
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
|
321 |
+
320: 'damselfly',
|
322 |
+
321: 'admiral',
|
323 |
+
322: 'ringlet, ringlet butterfly',
|
324 |
+
323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
|
325 |
+
324: 'cabbage butterfly',
|
326 |
+
325: 'sulphur butterfly, sulfur butterfly',
|
327 |
+
326: 'lycaenid, lycaenid butterfly',
|
328 |
+
327: 'starfish, sea star',
|
329 |
+
328: 'sea urchin',
|
330 |
+
329: 'sea cucumber, holothurian',
|
331 |
+
330: 'wood rabbit, cottontail, cottontail rabbit',
|
332 |
+
331: 'hare',
|
333 |
+
332: 'Angora, Angora rabbit',
|
334 |
+
333: 'hamster',
|
335 |
+
334: 'porcupine, hedgehog',
|
336 |
+
335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
|
337 |
+
336: 'marmot',
|
338 |
+
337: 'beaver',
|
339 |
+
338: 'guinea pig, Cavia cobaya',
|
340 |
+
339: 'sorrel',
|
341 |
+
340: 'zebra',
|
342 |
+
341: 'hog, pig, grunter, squealer, Sus scrofa',
|
343 |
+
342: 'wild boar, boar, Sus scrofa',
|
344 |
+
343: 'warthog',
|
345 |
+
344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
|
346 |
+
345: 'ox',
|
347 |
+
346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
|
348 |
+
347: 'bison',
|
349 |
+
348: 'ram, tup',
|
350 |
+
349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
|
351 |
+
350: 'ibex, Capra ibex',
|
352 |
+
351: 'hartebeest',
|
353 |
+
352: 'impala, Aepyceros melampus',
|
354 |
+
353: 'gazelle',
|
355 |
+
354: 'Arabian camel, dromedary, Camelus dromedarius',
|
356 |
+
355: 'llama',
|
357 |
+
356: 'weasel',
|
358 |
+
357: 'mink',
|
359 |
+
358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
|
360 |
+
359: 'black-footed ferret, ferret, Mustela nigripes',
|
361 |
+
360: 'otter',
|
362 |
+
361: 'skunk, polecat, wood pussy',
|
363 |
+
362: 'badger',
|
364 |
+
363: 'armadillo',
|
365 |
+
364: 'three-toed sloth, ai, Bradypus tridactylus',
|
366 |
+
365: 'orangutan, orang, orangutang, Pongo pygmaeus',
|
367 |
+
366: 'gorilla, Gorilla gorilla',
|
368 |
+
367: 'chimpanzee, chimp, Pan troglodytes',
|
369 |
+
368: 'gibbon, Hylobates lar',
|
370 |
+
369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
|
371 |
+
370: 'guenon, guenon monkey',
|
372 |
+
371: 'patas, hussar monkey, Erythrocebus patas',
|
373 |
+
372: 'baboon',
|
374 |
+
373: 'macaque',
|
375 |
+
374: 'langur',
|
376 |
+
375: 'colobus, colobus monkey',
|
377 |
+
376: 'proboscis monkey, Nasalis larvatus',
|
378 |
+
377: 'marmoset',
|
379 |
+
378: 'capuchin, ringtail, Cebus capucinus',
|
380 |
+
379: 'howler monkey, howler',
|
381 |
+
380: 'titi, titi monkey',
|
382 |
+
381: 'spider monkey, Ateles geoffroyi',
|
383 |
+
382: 'squirrel monkey, Saimiri sciureus',
|
384 |
+
383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
|
385 |
+
384: 'indri, indris, Indri indri, Indri brevicaudatus',
|
386 |
+
385: 'Indian elephant, Elephas maximus',
|
387 |
+
386: 'African elephant, Loxodonta africana',
|
388 |
+
387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
|
389 |
+
388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
|
390 |
+
389: 'barracouta, snoek',
|
391 |
+
390: 'eel',
|
392 |
+
391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
|
393 |
+
392: 'rock beauty, Holocanthus tricolor',
|
394 |
+
393: 'anemone fish',
|
395 |
+
394: 'sturgeon',
|
396 |
+
395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
|
397 |
+
396: 'lionfish',
|
398 |
+
397: 'puffer, pufferfish, blowfish, globefish',
|
399 |
+
398: 'abacus',
|
400 |
+
399: 'abaya',
|
401 |
+
400: "academic gown, academic robe, judge's robe",
|
402 |
+
401: 'accordion, piano accordion, squeeze box',
|
403 |
+
402: 'acoustic guitar',
|
404 |
+
403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
|
405 |
+
404: 'airliner',
|
406 |
+
405: 'airship, dirigible',
|
407 |
+
406: 'altar',
|
408 |
+
407: 'ambulance',
|
409 |
+
408: 'amphibian, amphibious vehicle',
|
410 |
+
409: 'analog clock',
|
411 |
+
410: 'apiary, bee house',
|
412 |
+
411: 'apron',
|
413 |
+
412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
|
414 |
+
413: 'assault rifle, assault gun',
|
415 |
+
414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
|
416 |
+
415: 'bakery, bakeshop, bakehouse',
|
417 |
+
416: 'balance beam, beam',
|
418 |
+
417: 'balloon',
|
419 |
+
418: 'ballpoint, ballpoint pen, ballpen, Biro',
|
420 |
+
419: 'Band Aid',
|
421 |
+
420: 'banjo',
|
422 |
+
421: 'bannister, banister, balustrade, balusters, handrail',
|
423 |
+
422: 'barbell',
|
424 |
+
423: 'barber chair',
|
425 |
+
424: 'barbershop',
|
426 |
+
425: 'barn',
|
427 |
+
426: 'barometer',
|
428 |
+
427: 'barrel, cask',
|
429 |
+
428: 'barrow, garden cart, lawn cart, wheelbarrow',
|
430 |
+
429: 'baseball',
|
431 |
+
430: 'basketball',
|
432 |
+
431: 'bassinet',
|
433 |
+
432: 'bassoon',
|
434 |
+
433: 'bathing cap, swimming cap',
|
435 |
+
434: 'bath towel',
|
436 |
+
435: 'bathtub, bathing tub, bath, tub',
|
437 |
+
436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
|
438 |
+
437: 'beacon, lighthouse, beacon light, pharos',
|
439 |
+
438: 'beaker',
|
440 |
+
439: 'bearskin, busby, shako',
|
441 |
+
440: 'beer bottle',
|
442 |
+
441: 'beer glass',
|
443 |
+
442: 'bell cote, bell cot',
|
444 |
+
443: 'bib',
|
445 |
+
444: 'bicycle-built-for-two, tandem bicycle, tandem',
|
446 |
+
445: 'bikini, two-piece',
|
447 |
+
446: 'binder, ring-binder',
|
448 |
+
447: 'binoculars, field glasses, opera glasses',
|
449 |
+
448: 'birdhouse',
|
450 |
+
449: 'boathouse',
|
451 |
+
450: 'bobsled, bobsleigh, bob',
|
452 |
+
451: 'bolo tie, bolo, bola tie, bola',
|
453 |
+
452: 'bonnet, poke bonnet',
|
454 |
+
453: 'bookcase',
|
455 |
+
454: 'bookshop, bookstore, bookstall',
|
456 |
+
455: 'bottlecap',
|
457 |
+
456: 'bow',
|
458 |
+
457: 'bow tie, bow-tie, bowtie',
|
459 |
+
458: 'brass, memorial tablet, plaque',
|
460 |
+
459: 'brassiere, bra, bandeau',
|
461 |
+
460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
|
462 |
+
461: 'breastplate, aegis, egis',
|
463 |
+
462: 'broom',
|
464 |
+
463: 'bucket, pail',
|
465 |
+
464: 'buckle',
|
466 |
+
465: 'bulletproof vest',
|
467 |
+
466: 'bullet train, bullet',
|
468 |
+
467: 'butcher shop, meat market',
|
469 |
+
468: 'cab, hack, taxi, taxicab',
|
470 |
+
469: 'caldron, cauldron',
|
471 |
+
470: 'candle, taper, wax light',
|
472 |
+
471: 'cannon',
|
473 |
+
472: 'canoe',
|
474 |
+
473: 'can opener, tin opener',
|
475 |
+
474: 'cardigan',
|
476 |
+
475: 'car mirror',
|
477 |
+
476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
|
478 |
+
477: "carpenter's kit, tool kit",
|
479 |
+
478: 'carton',
|
480 |
+
479: 'car wheel',
|
481 |
+
480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
|
482 |
+
481: 'cassette',
|
483 |
+
482: 'cassette player',
|
484 |
+
483: 'castle',
|
485 |
+
484: 'catamaran',
|
486 |
+
485: 'CD player',
|
487 |
+
486: 'cello, violoncello',
|
488 |
+
487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
|
489 |
+
488: 'chain',
|
490 |
+
489: 'chainlink fence',
|
491 |
+
490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
|
492 |
+
491: 'chain saw, chainsaw',
|
493 |
+
492: 'chest',
|
494 |
+
493: 'chiffonier, commode',
|
495 |
+
494: 'chime, bell, gong',
|
496 |
+
495: 'china cabinet, china closet',
|
497 |
+
496: 'Christmas stocking',
|
498 |
+
497: 'church, church building',
|
499 |
+
498: 'cinema, movie theater, movie theatre, movie house, picture palace',
|
500 |
+
499: 'cleaver, meat cleaver, chopper',
|
501 |
+
500: 'cliff dwelling',
|
502 |
+
501: 'cloak',
|
503 |
+
502: 'clog, geta, patten, sabot',
|
504 |
+
503: 'cocktail shaker',
|
505 |
+
504: 'coffee mug',
|
506 |
+
505: 'coffeepot',
|
507 |
+
506: 'coil, spiral, volute, whorl, helix',
|
508 |
+
507: 'combination lock',
|
509 |
+
508: 'computer keyboard, keypad',
|
510 |
+
509: 'confectionery, confectionary, candy store',
|
511 |
+
510: 'container ship, containership, container vessel',
|
512 |
+
511: 'convertible',
|
513 |
+
512: 'corkscrew, bottle screw',
|
514 |
+
513: 'cornet, horn, trumpet, trump',
|
515 |
+
514: 'cowboy boot',
|
516 |
+
515: 'cowboy hat, ten-gallon hat',
|
517 |
+
516: 'cradle',
|
518 |
+
517: 'crane',
|
519 |
+
518: 'crash helmet',
|
520 |
+
519: 'crate',
|
521 |
+
520: 'crib, cot',
|
522 |
+
521: 'Crock Pot',
|
523 |
+
522: 'croquet ball',
|
524 |
+
523: 'crutch',
|
525 |
+
524: 'cuirass',
|
526 |
+
525: 'dam, dike, dyke',
|
527 |
+
526: 'desk',
|
528 |
+
527: 'desktop computer',
|
529 |
+
528: 'dial telephone, dial phone',
|
530 |
+
529: 'diaper, nappy, napkin',
|
531 |
+
530: 'digital clock',
|
532 |
+
531: 'digital watch',
|
533 |
+
532: 'dining table, board',
|
534 |
+
533: 'dishrag, dishcloth',
|
535 |
+
534: 'dishwasher, dish washer, dishwashing machine',
|
536 |
+
535: 'disk brake, disc brake',
|
537 |
+
536: 'dock, dockage, docking facility',
|
538 |
+
537: 'dogsled, dog sled, dog sleigh',
|
539 |
+
538: 'dome',
|
540 |
+
539: 'doormat, welcome mat',
|
541 |
+
540: 'drilling platform, offshore rig',
|
542 |
+
541: 'drum, membranophone, tympan',
|
543 |
+
542: 'drumstick',
|
544 |
+
543: 'dumbbell',
|
545 |
+
544: 'Dutch oven',
|
546 |
+
545: 'electric fan, blower',
|
547 |
+
546: 'electric guitar',
|
548 |
+
547: 'electric locomotive',
|
549 |
+
548: 'entertainment center',
|
550 |
+
549: 'envelope',
|
551 |
+
550: 'espresso maker',
|
552 |
+
551: 'face powder',
|
553 |
+
552: 'feather boa, boa',
|
554 |
+
553: 'file, file cabinet, filing cabinet',
|
555 |
+
554: 'fireboat',
|
556 |
+
555: 'fire engine, fire truck',
|
557 |
+
556: 'fire screen, fireguard',
|
558 |
+
557: 'flagpole, flagstaff',
|
559 |
+
558: 'flute, transverse flute',
|
560 |
+
559: 'folding chair',
|
561 |
+
560: 'football helmet',
|
562 |
+
561: 'forklift',
|
563 |
+
562: 'fountain',
|
564 |
+
563: 'fountain pen',
|
565 |
+
564: 'four-poster',
|
566 |
+
565: 'freight car',
|
567 |
+
566: 'French horn, horn',
|
568 |
+
567: 'frying pan, frypan, skillet',
|
569 |
+
568: 'fur coat',
|
570 |
+
569: 'garbage truck, dustcart',
|
571 |
+
570: 'gasmask, respirator, gas helmet',
|
572 |
+
571: 'gas pump, gasoline pump, petrol pump, island dispenser',
|
573 |
+
572: 'goblet',
|
574 |
+
573: 'go-kart',
|
575 |
+
574: 'golf ball',
|
576 |
+
575: 'golfcart, golf cart',
|
577 |
+
576: 'gondola',
|
578 |
+
577: 'gong, tam-tam',
|
579 |
+
578: 'gown',
|
580 |
+
579: 'grand piano, grand',
|
581 |
+
580: 'greenhouse, nursery, glasshouse',
|
582 |
+
581: 'grille, radiator grille',
|
583 |
+
582: 'grocery store, grocery, food market, market',
|
584 |
+
583: 'guillotine',
|
585 |
+
584: 'hair slide',
|
586 |
+
585: 'hair spray',
|
587 |
+
586: 'half track',
|
588 |
+
587: 'hammer',
|
589 |
+
588: 'hamper',
|
590 |
+
589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
|
591 |
+
590: 'hand-held computer, hand-held microcomputer',
|
592 |
+
591: 'handkerchief, hankie, hanky, hankey',
|
593 |
+
592: 'hard disc, hard disk, fixed disk',
|
594 |
+
593: 'harmonica, mouth organ, harp, mouth harp',
|
595 |
+
594: 'harp',
|
596 |
+
595: 'harvester, reaper',
|
597 |
+
596: 'hatchet',
|
598 |
+
597: 'holster',
|
599 |
+
598: 'home theater, home theatre',
|
600 |
+
599: 'honeycomb',
|
601 |
+
600: 'hook, claw',
|
602 |
+
601: 'hoopskirt, crinoline',
|
603 |
+
602: 'horizontal bar, high bar',
|
604 |
+
603: 'horse cart, horse-cart',
|
605 |
+
604: 'hourglass',
|
606 |
+
605: 'iPod',
|
607 |
+
606: 'iron, smoothing iron',
|
608 |
+
607: "jack-o'-lantern",
|
609 |
+
608: 'jean, blue jean, denim',
|
610 |
+
609: 'jeep, landrover',
|
611 |
+
610: 'jersey, T-shirt, tee shirt',
|
612 |
+
611: 'jigsaw puzzle',
|
613 |
+
612: 'jinrikisha, ricksha, rickshaw',
|
614 |
+
613: 'joystick',
|
615 |
+
614: 'kimono',
|
616 |
+
615: 'knee pad',
|
617 |
+
616: 'knot',
|
618 |
+
617: 'lab coat, laboratory coat',
|
619 |
+
618: 'ladle',
|
620 |
+
619: 'lampshade, lamp shade',
|
621 |
+
620: 'laptop, laptop computer',
|
622 |
+
621: 'lawn mower, mower',
|
623 |
+
622: 'lens cap, lens cover',
|
624 |
+
623: 'letter opener, paper knife, paperknife',
|
625 |
+
624: 'library',
|
626 |
+
625: 'lifeboat',
|
627 |
+
626: 'lighter, light, igniter, ignitor',
|
628 |
+
627: 'limousine, limo',
|
629 |
+
628: 'liner, ocean liner',
|
630 |
+
629: 'lipstick, lip rouge',
|
631 |
+
630: 'Loafer',
|
632 |
+
631: 'lotion',
|
633 |
+
632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
|
634 |
+
633: "loupe, jeweler's loupe",
|
635 |
+
634: 'lumbermill, sawmill',
|
636 |
+
635: 'magnetic compass',
|
637 |
+
636: 'mailbag, postbag',
|
638 |
+
637: 'mailbox, letter box',
|
639 |
+
638: 'maillot',
|
640 |
+
639: 'maillot, tank suit',
|
641 |
+
640: 'manhole cover',
|
642 |
+
641: 'maraca',
|
643 |
+
642: 'marimba, xylophone',
|
644 |
+
643: 'mask',
|
645 |
+
644: 'matchstick',
|
646 |
+
645: 'maypole',
|
647 |
+
646: 'maze, labyrinth',
|
648 |
+
647: 'measuring cup',
|
649 |
+
648: 'medicine chest, medicine cabinet',
|
650 |
+
649: 'megalith, megalithic structure',
|
651 |
+
650: 'microphone, mike',
|
652 |
+
651: 'microwave, microwave oven',
|
653 |
+
652: 'military uniform',
|
654 |
+
653: 'milk can',
|
655 |
+
654: 'minibus',
|
656 |
+
655: 'miniskirt, mini',
|
657 |
+
656: 'minivan',
|
658 |
+
657: 'missile',
|
659 |
+
658: 'mitten',
|
660 |
+
659: 'mixing bowl',
|
661 |
+
660: 'mobile home, manufactured home',
|
662 |
+
661: 'Model T',
|
663 |
+
662: 'modem',
|
664 |
+
663: 'monastery',
|
665 |
+
664: 'monitor',
|
666 |
+
665: 'moped',
|
667 |
+
666: 'mortar',
|
668 |
+
667: 'mortarboard',
|
669 |
+
668: 'mosque',
|
670 |
+
669: 'mosquito net',
|
671 |
+
670: 'motor scooter, scooter',
|
672 |
+
671: 'mountain bike, all-terrain bike, off-roader',
|
673 |
+
672: 'mountain tent',
|
674 |
+
673: 'mouse, computer mouse',
|
675 |
+
674: 'mousetrap',
|
676 |
+
675: 'moving van',
|
677 |
+
676: 'muzzle',
|
678 |
+
677: 'nail',
|
679 |
+
678: 'neck brace',
|
680 |
+
679: 'necklace',
|
681 |
+
680: 'nipple',
|
682 |
+
681: 'notebook, notebook computer',
|
683 |
+
682: 'obelisk',
|
684 |
+
683: 'oboe, hautboy, hautbois',
|
685 |
+
684: 'ocarina, sweet potato',
|
686 |
+
685: 'odometer, hodometer, mileometer, milometer',
|
687 |
+
686: 'oil filter',
|
688 |
+
687: 'organ, pipe organ',
|
689 |
+
688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
|
690 |
+
689: 'overskirt',
|
691 |
+
690: 'oxcart',
|
692 |
+
691: 'oxygen mask',
|
693 |
+
692: 'packet',
|
694 |
+
693: 'paddle, boat paddle',
|
695 |
+
694: 'paddlewheel, paddle wheel',
|
696 |
+
695: 'padlock',
|
697 |
+
696: 'paintbrush',
|
698 |
+
697: "pajama, pyjama, pj's, jammies",
|
699 |
+
698: 'palace',
|
700 |
+
699: 'panpipe, pandean pipe, syrinx',
|
701 |
+
700: 'paper towel',
|
702 |
+
701: 'parachute, chute',
|
703 |
+
702: 'parallel bars, bars',
|
704 |
+
703: 'park bench',
|
705 |
+
704: 'parking meter',
|
706 |
+
705: 'passenger car, coach, carriage',
|
707 |
+
706: 'patio, terrace',
|
708 |
+
707: 'pay-phone, pay-station',
|
709 |
+
708: 'pedestal, plinth, footstall',
|
710 |
+
709: 'pencil box, pencil case',
|
711 |
+
710: 'pencil sharpener',
|
712 |
+
711: 'perfume, essence',
|
713 |
+
712: 'Petri dish',
|
714 |
+
713: 'photocopier',
|
715 |
+
714: 'pick, plectrum, plectron',
|
716 |
+
715: 'pickelhaube',
|
717 |
+
716: 'picket fence, paling',
|
718 |
+
717: 'pickup, pickup truck',
|
719 |
+
718: 'pier',
|
720 |
+
719: 'piggy bank, penny bank',
|
721 |
+
720: 'pill bottle',
|
722 |
+
721: 'pillow',
|
723 |
+
722: 'ping-pong ball',
|
724 |
+
723: 'pinwheel',
|
725 |
+
724: 'pirate, pirate ship',
|
726 |
+
725: 'pitcher, ewer',
|
727 |
+
726: "plane, carpenter's plane, woodworking plane",
|
728 |
+
727: 'planetarium',
|
729 |
+
728: 'plastic bag',
|
730 |
+
729: 'plate rack',
|
731 |
+
730: 'plow, plough',
|
732 |
+
731: "plunger, plumber's helper",
|
733 |
+
732: 'Polaroid camera, Polaroid Land camera',
|
734 |
+
733: 'pole',
|
735 |
+
734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
|
736 |
+
735: 'poncho',
|
737 |
+
736: 'pool table, billiard table, snooker table',
|
738 |
+
737: 'pop bottle, soda bottle',
|
739 |
+
738: 'pot, flowerpot',
|
740 |
+
739: "potter's wheel",
|
741 |
+
740: 'power drill',
|
742 |
+
741: 'prayer rug, prayer mat',
|
743 |
+
742: 'printer',
|
744 |
+
743: 'prison, prison house',
|
745 |
+
744: 'projectile, missile',
|
746 |
+
745: 'projector',
|
747 |
+
746: 'puck, hockey puck',
|
748 |
+
747: 'punching bag, punch bag, punching ball, punchball',
|
749 |
+
748: 'purse',
|
750 |
+
749: 'quill, quill pen',
|
751 |
+
750: 'quilt, comforter, comfort, puff',
|
752 |
+
751: 'racer, race car, racing car',
|
753 |
+
752: 'racket, racquet',
|
754 |
+
753: 'radiator',
|
755 |
+
754: 'radio, wireless',
|
756 |
+
755: 'radio telescope, radio reflector',
|
757 |
+
756: 'rain barrel',
|
758 |
+
757: 'recreational vehicle, RV, R.V.',
|
759 |
+
758: 'reel',
|
760 |
+
759: 'reflex camera',
|
761 |
+
760: 'refrigerator, icebox',
|
762 |
+
761: 'remote control, remote',
|
763 |
+
762: 'restaurant, eating house, eating place, eatery',
|
764 |
+
763: 'revolver, six-gun, six-shooter',
|
765 |
+
764: 'rifle',
|
766 |
+
765: 'rocking chair, rocker',
|
767 |
+
766: 'rotisserie',
|
768 |
+
767: 'rubber eraser, rubber, pencil eraser',
|
769 |
+
768: 'rugby ball',
|
770 |
+
769: 'rule, ruler',
|
771 |
+
770: 'running shoe',
|
772 |
+
771: 'safe',
|
773 |
+
772: 'safety pin',
|
774 |
+
773: 'saltshaker, salt shaker',
|
775 |
+
774: 'sandal',
|
776 |
+
775: 'sarong',
|
777 |
+
776: 'sax, saxophone',
|
778 |
+
777: 'scabbard',
|
779 |
+
778: 'scale, weighing machine',
|
780 |
+
779: 'school bus',
|
781 |
+
780: 'schooner',
|
782 |
+
781: 'scoreboard',
|
783 |
+
782: 'screen, CRT screen',
|
784 |
+
783: 'screw',
|
785 |
+
784: 'screwdriver',
|
786 |
+
785: 'seat belt, seatbelt',
|
787 |
+
786: 'sewing machine',
|
788 |
+
787: 'shield, buckler',
|
789 |
+
788: 'shoe shop, shoe-shop, shoe store',
|
790 |
+
789: 'shoji',
|
791 |
+
790: 'shopping basket',
|
792 |
+
791: 'shopping cart',
|
793 |
+
792: 'shovel',
|
794 |
+
793: 'shower cap',
|
795 |
+
794: 'shower curtain',
|
796 |
+
795: 'ski',
|
797 |
+
796: 'ski mask',
|
798 |
+
797: 'sleeping bag',
|
799 |
+
798: 'slide rule, slipstick',
|
800 |
+
799: 'sliding door',
|
801 |
+
800: 'slot, one-armed bandit',
|
802 |
+
801: 'snorkel',
|
803 |
+
802: 'snowmobile',
|
804 |
+
803: 'snowplow, snowplough',
|
805 |
+
804: 'soap dispenser',
|
806 |
+
805: 'soccer ball',
|
807 |
+
806: 'sock',
|
808 |
+
807: 'solar dish, solar collector, solar furnace',
|
809 |
+
808: 'sombrero',
|
810 |
+
809: 'soup bowl',
|
811 |
+
810: 'space bar',
|
812 |
+
811: 'space heater',
|
813 |
+
812: 'space shuttle',
|
814 |
+
813: 'spatula',
|
815 |
+
814: 'speedboat',
|
816 |
+
815: "spider web, spider's web",
|
817 |
+
816: 'spindle',
|
818 |
+
817: 'sports car, sport car',
|
819 |
+
818: 'spotlight, spot',
|
820 |
+
819: 'stage',
|
821 |
+
820: 'steam locomotive',
|
822 |
+
821: 'steel arch bridge',
|
823 |
+
822: 'steel drum',
|
824 |
+
823: 'stethoscope',
|
825 |
+
824: 'stole',
|
826 |
+
825: 'stone wall',
|
827 |
+
826: 'stopwatch, stop watch',
|
828 |
+
827: 'stove',
|
829 |
+
828: 'strainer',
|
830 |
+
829: 'streetcar, tram, tramcar, trolley, trolley car',
|
831 |
+
830: 'stretcher',
|
832 |
+
831: 'studio couch, day bed',
|
833 |
+
832: 'stupa, tope',
|
834 |
+
833: 'submarine, pigboat, sub, U-boat',
|
835 |
+
834: 'suit, suit of clothes',
|
836 |
+
835: 'sundial',
|
837 |
+
836: 'sunglass',
|
838 |
+
837: 'sunglasses, dark glasses, shades',
|
839 |
+
838: 'sunscreen, sunblock, sun blocker',
|
840 |
+
839: 'suspension bridge',
|
841 |
+
840: 'swab, swob, mop',
|
842 |
+
841: 'sweatshirt',
|
843 |
+
842: 'swimming trunks, bathing trunks',
|
844 |
+
843: 'swing',
|
845 |
+
844: 'switch, electric switch, electrical switch',
|
846 |
+
845: 'syringe',
|
847 |
+
846: 'table lamp',
|
848 |
+
847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
|
849 |
+
848: 'tape player',
|
850 |
+
849: 'teapot',
|
851 |
+
850: 'teddy, teddy bear',
|
852 |
+
851: 'television, television system',
|
853 |
+
852: 'tennis ball',
|
854 |
+
853: 'thatch, thatched roof',
|
855 |
+
854: 'theater curtain, theatre curtain',
|
856 |
+
855: 'thimble',
|
857 |
+
856: 'thresher, thrasher, threshing machine',
|
858 |
+
857: 'throne',
|
859 |
+
858: 'tile roof',
|
860 |
+
859: 'toaster',
|
861 |
+
860: 'tobacco shop, tobacconist shop, tobacconist',
|
862 |
+
861: 'toilet seat',
|
863 |
+
862: 'torch',
|
864 |
+
863: 'totem pole',
|
865 |
+
864: 'tow truck, tow car, wrecker',
|
866 |
+
865: 'toyshop',
|
867 |
+
866: 'tractor',
|
868 |
+
867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
|
869 |
+
868: 'tray',
|
870 |
+
869: 'trench coat',
|
871 |
+
870: 'tricycle, trike, velocipede',
|
872 |
+
871: 'trimaran',
|
873 |
+
872: 'tripod',
|
874 |
+
873: 'triumphal arch',
|
875 |
+
874: 'trolleybus, trolley coach, trackless trolley',
|
876 |
+
875: 'trombone',
|
877 |
+
876: 'tub, vat',
|
878 |
+
877: 'turnstile',
|
879 |
+
878: 'typewriter keyboard',
|
880 |
+
879: 'umbrella',
|
881 |
+
880: 'unicycle, monocycle',
|
882 |
+
881: 'upright, upright piano',
|
883 |
+
882: 'vacuum, vacuum cleaner',
|
884 |
+
883: 'vase',
|
885 |
+
884: 'vault',
|
886 |
+
885: 'velvet',
|
887 |
+
886: 'vending machine',
|
888 |
+
887: 'vestment',
|
889 |
+
888: 'viaduct',
|
890 |
+
889: 'violin, fiddle',
|
891 |
+
890: 'volleyball',
|
892 |
+
891: 'waffle iron',
|
893 |
+
892: 'wall clock',
|
894 |
+
893: 'wallet, billfold, notecase, pocketbook',
|
895 |
+
894: 'wardrobe, closet, press',
|
896 |
+
895: 'warplane, military plane',
|
897 |
+
896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
|
898 |
+
897: 'washer, automatic washer, washing machine',
|
899 |
+
898: 'water bottle',
|
900 |
+
899: 'water jug',
|
901 |
+
900: 'water tower',
|
902 |
+
901: 'whiskey jug',
|
903 |
+
902: 'whistle',
|
904 |
+
903: 'wig',
|
905 |
+
904: 'window screen',
|
906 |
+
905: 'window shade',
|
907 |
+
906: 'Windsor tie',
|
908 |
+
907: 'wine bottle',
|
909 |
+
908: 'wing',
|
910 |
+
909: 'wok',
|
911 |
+
910: 'wooden spoon',
|
912 |
+
911: 'wool, woolen, woollen',
|
913 |
+
912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
|
914 |
+
913: 'wreck',
|
915 |
+
914: 'yawl',
|
916 |
+
915: 'yurt',
|
917 |
+
916: 'web site, website, internet site, site',
|
918 |
+
917: 'comic book',
|
919 |
+
918: 'crossword puzzle, crossword',
|
920 |
+
919: 'street sign',
|
921 |
+
920: 'traffic light, traffic signal, stoplight',
|
922 |
+
921: 'book jacket, dust cover, dust jacket, dust wrapper',
|
923 |
+
922: 'menu',
|
924 |
+
923: 'plate',
|
925 |
+
924: 'guacamole',
|
926 |
+
925: 'consomme',
|
927 |
+
926: 'hot pot, hotpot',
|
928 |
+
927: 'trifle',
|
929 |
+
928: 'ice cream, icecream',
|
930 |
+
929: 'ice lolly, lolly, lollipop, popsicle',
|
931 |
+
930: 'French loaf',
|
932 |
+
931: 'bagel, beigel',
|
933 |
+
932: 'pretzel',
|
934 |
+
933: 'cheeseburger',
|
935 |
+
934: 'hotdog, hot dog, red hot',
|
936 |
+
935: 'mashed potato',
|
937 |
+
936: 'head cabbage',
|
938 |
+
937: 'broccoli',
|
939 |
+
938: 'cauliflower',
|
940 |
+
939: 'zucchini, courgette',
|
941 |
+
940: 'spaghetti squash',
|
942 |
+
941: 'acorn squash',
|
943 |
+
942: 'butternut squash',
|
944 |
+
943: 'cucumber, cuke',
|
945 |
+
944: 'artichoke, globe artichoke',
|
946 |
+
945: 'bell pepper',
|
947 |
+
946: 'cardoon',
|
948 |
+
947: 'mushroom',
|
949 |
+
948: 'Granny Smith',
|
950 |
+
949: 'strawberry',
|
951 |
+
950: 'orange',
|
952 |
+
951: 'lemon',
|
953 |
+
952: 'fig',
|
954 |
+
953: 'pineapple, ananas',
|
955 |
+
954: 'banana',
|
956 |
+
955: 'jackfruit, jak, jack',
|
957 |
+
956: 'custard apple',
|
958 |
+
957: 'pomegranate',
|
959 |
+
958: 'hay',
|
960 |
+
959: 'carbonara',
|
961 |
+
960: 'chocolate sauce, chocolate syrup',
|
962 |
+
961: 'dough',
|
963 |
+
962: 'meat loaf, meatloaf',
|
964 |
+
963: 'pizza, pizza pie',
|
965 |
+
964: 'potpie',
|
966 |
+
965: 'burrito',
|
967 |
+
966: 'red wine',
|
968 |
+
967: 'espresso',
|
969 |
+
968: 'cup',
|
970 |
+
969: 'eggnog',
|
971 |
+
970: 'alp',
|
972 |
+
971: 'bubble',
|
973 |
+
972: 'cliff, drop, drop-off',
|
974 |
+
973: 'coral reef',
|
975 |
+
974: 'geyser',
|
976 |
+
975: 'lakeside, lakeshore',
|
977 |
+
976: 'promontory, headland, head, foreland',
|
978 |
+
977: 'sandbar, sand bar',
|
979 |
+
978: 'seashore, coast, seacoast, sea-coast',
|
980 |
+
979: 'valley, vale',
|
981 |
+
980: 'volcano',
|
982 |
+
981: 'ballplayer, baseball player',
|
983 |
+
982: 'groom, bridegroom',
|
984 |
+
983: 'scuba diver',
|
985 |
+
984: 'rapeseed',
|
986 |
+
985: 'daisy',
|
987 |
+
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
|
988 |
+
987: 'corn',
|
989 |
+
988: 'acorn',
|
990 |
+
989: 'hip, rose hip, rosehip',
|
991 |
+
990: 'buckeye, horse chestnut, conker',
|
992 |
+
991: 'coral fungus',
|
993 |
+
992: 'agaric',
|
994 |
+
993: 'gyromitra',
|
995 |
+
994: 'stinkhorn, carrion fungus',
|
996 |
+
995: 'earthstar',
|
997 |
+
996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
|
998 |
+
997: 'bolete',
|
999 |
+
998: 'ear, spike, capitulum',
|
1000 |
+
999: 'toilet tissue, toilet paper, bathroom tissue'
|
gligen/ldm/data/index_synset.yaml
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0: n01440764
|
2 |
+
1: n01443537
|
3 |
+
2: n01484850
|
4 |
+
3: n01491361
|
5 |
+
4: n01494475
|
6 |
+
5: n01496331
|
7 |
+
6: n01498041
|
8 |
+
7: n01514668
|
9 |
+
8: n07646067
|
10 |
+
9: n01518878
|
11 |
+
10: n01530575
|
12 |
+
11: n01531178
|
13 |
+
12: n01532829
|
14 |
+
13: n01534433
|
15 |
+
14: n01537544
|
16 |
+
15: n01558993
|
17 |
+
16: n01560419
|
18 |
+
17: n01580077
|
19 |
+
18: n01582220
|
20 |
+
19: n01592084
|
21 |
+
20: n01601694
|
22 |
+
21: n13382471
|
23 |
+
22: n01614925
|
24 |
+
23: n01616318
|
25 |
+
24: n01622779
|
26 |
+
25: n01629819
|
27 |
+
26: n01630670
|
28 |
+
27: n01631663
|
29 |
+
28: n01632458
|
30 |
+
29: n01632777
|
31 |
+
30: n01641577
|
32 |
+
31: n01644373
|
33 |
+
32: n01644900
|
34 |
+
33: n01664065
|
35 |
+
34: n01665541
|
36 |
+
35: n01667114
|
37 |
+
36: n01667778
|
38 |
+
37: n01669191
|
39 |
+
38: n01675722
|
40 |
+
39: n01677366
|
41 |
+
40: n01682714
|
42 |
+
41: n01685808
|
43 |
+
42: n01687978
|
44 |
+
43: n01688243
|
45 |
+
44: n01689811
|
46 |
+
45: n01692333
|
47 |
+
46: n01693334
|
48 |
+
47: n01694178
|
49 |
+
48: n01695060
|
50 |
+
49: n01697457
|
51 |
+
50: n01698640
|
52 |
+
51: n01704323
|
53 |
+
52: n01728572
|
54 |
+
53: n01728920
|
55 |
+
54: n01729322
|
56 |
+
55: n01729977
|
57 |
+
56: n01734418
|
58 |
+
57: n01735189
|
59 |
+
58: n01737021
|
60 |
+
59: n01739381
|
61 |
+
60: n01740131
|
62 |
+
61: n01742172
|
63 |
+
62: n01744401
|
64 |
+
63: n01748264
|
65 |
+
64: n01749939
|
66 |
+
65: n01751748
|
67 |
+
66: n01753488
|
68 |
+
67: n01755581
|
69 |
+
68: n01756291
|
70 |
+
69: n01768244
|
71 |
+
70: n01770081
|
72 |
+
71: n01770393
|
73 |
+
72: n01773157
|
74 |
+
73: n01773549
|
75 |
+
74: n01773797
|
76 |
+
75: n01774384
|
77 |
+
76: n01774750
|
78 |
+
77: n01775062
|
79 |
+
78: n04432308
|
80 |
+
79: n01784675
|
81 |
+
80: n01795545
|
82 |
+
81: n01796340
|
83 |
+
82: n01797886
|
84 |
+
83: n01798484
|
85 |
+
84: n01806143
|
86 |
+
85: n07647321
|
87 |
+
86: n07647496
|
88 |
+
87: n01817953
|
89 |
+
88: n01818515
|
90 |
+
89: n01819313
|
91 |
+
90: n01820546
|
92 |
+
91: n01824575
|
93 |
+
92: n01828970
|
94 |
+
93: n01829413
|
95 |
+
94: n01833805
|
96 |
+
95: n01843065
|
97 |
+
96: n01843383
|
98 |
+
97: n01847000
|
99 |
+
98: n01855032
|
100 |
+
99: n07646821
|
101 |
+
100: n01860187
|
102 |
+
101: n01871265
|
103 |
+
102: n01872772
|
104 |
+
103: n01873310
|
105 |
+
104: n01877812
|
106 |
+
105: n01882714
|
107 |
+
106: n01883070
|
108 |
+
107: n01910747
|
109 |
+
108: n01914609
|
110 |
+
109: n01917289
|
111 |
+
110: n01924916
|
112 |
+
111: n01930112
|
113 |
+
112: n01943899
|
114 |
+
113: n01944390
|
115 |
+
114: n13719102
|
116 |
+
115: n01950731
|
117 |
+
116: n01955084
|
118 |
+
117: n01968897
|
119 |
+
118: n01978287
|
120 |
+
119: n01978455
|
121 |
+
120: n01980166
|
122 |
+
121: n01981276
|
123 |
+
122: n01983481
|
124 |
+
123: n01984695
|
125 |
+
124: n01985128
|
126 |
+
125: n01986214
|
127 |
+
126: n01990800
|
128 |
+
127: n02002556
|
129 |
+
128: n02002724
|
130 |
+
129: n02006656
|
131 |
+
130: n02007558
|
132 |
+
131: n02009229
|
133 |
+
132: n02009912
|
134 |
+
133: n02011460
|
135 |
+
134: n03126707
|
136 |
+
135: n02013706
|
137 |
+
136: n02017213
|
138 |
+
137: n02018207
|
139 |
+
138: n02018795
|
140 |
+
139: n02025239
|
141 |
+
140: n02027492
|
142 |
+
141: n02028035
|
143 |
+
142: n02033041
|
144 |
+
143: n02037110
|
145 |
+
144: n02051845
|
146 |
+
145: n02056570
|
147 |
+
146: n02058221
|
148 |
+
147: n02066245
|
149 |
+
148: n02071294
|
150 |
+
149: n02074367
|
151 |
+
150: n02077923
|
152 |
+
151: n08742578
|
153 |
+
152: n02085782
|
154 |
+
153: n02085936
|
155 |
+
154: n02086079
|
156 |
+
155: n02086240
|
157 |
+
156: n02086646
|
158 |
+
157: n02086910
|
159 |
+
158: n02087046
|
160 |
+
159: n02087394
|
161 |
+
160: n02088094
|
162 |
+
161: n02088238
|
163 |
+
162: n02088364
|
164 |
+
163: n02088466
|
165 |
+
164: n02088632
|
166 |
+
165: n02089078
|
167 |
+
166: n02089867
|
168 |
+
167: n02089973
|
169 |
+
168: n02090379
|
170 |
+
169: n02090622
|
171 |
+
170: n02090721
|
172 |
+
171: n02091032
|
173 |
+
172: n02091134
|
174 |
+
173: n02091244
|
175 |
+
174: n02091467
|
176 |
+
175: n02091635
|
177 |
+
176: n02091831
|
178 |
+
177: n02092002
|
179 |
+
178: n02092339
|
180 |
+
179: n02093256
|
181 |
+
180: n02093428
|
182 |
+
181: n02093647
|
183 |
+
182: n02093754
|
184 |
+
183: n02093859
|
185 |
+
184: n02093991
|
186 |
+
185: n02094114
|
187 |
+
186: n02094258
|
188 |
+
187: n02094433
|
189 |
+
188: n02095314
|
190 |
+
189: n02095570
|
191 |
+
190: n02095889
|
192 |
+
191: n02096051
|
193 |
+
192: n02096177
|
194 |
+
193: n02096294
|
195 |
+
194: n02096437
|
196 |
+
195: n02096585
|
197 |
+
196: n02097047
|
198 |
+
197: n02097130
|
199 |
+
198: n02097209
|
200 |
+
199: n02097298
|
201 |
+
200: n02097474
|
202 |
+
201: n02097658
|
203 |
+
202: n02098105
|
204 |
+
203: n02098286
|
205 |
+
204: n02098413
|
206 |
+
205: n02099267
|
207 |
+
206: n02099429
|
208 |
+
207: n02099601
|
209 |
+
208: n02099712
|
210 |
+
209: n02099849
|
211 |
+
210: n02100236
|
212 |
+
211: n02100583
|
213 |
+
212: n02100735
|
214 |
+
213: n02100877
|
215 |
+
214: n02101006
|
216 |
+
215: n02101388
|
217 |
+
216: n02101556
|
218 |
+
217: n02102040
|
219 |
+
218: n02102177
|
220 |
+
219: n02102318
|
221 |
+
220: n02102480
|
222 |
+
221: n02102973
|
223 |
+
222: n02104029
|
224 |
+
223: n02104365
|
225 |
+
224: n02105056
|
226 |
+
225: n02105162
|
227 |
+
226: n02105251
|
228 |
+
227: n02105412
|
229 |
+
228: n02105505
|
230 |
+
229: n02105641
|
231 |
+
230: n02105855
|
232 |
+
231: n02106030
|
233 |
+
232: n02106166
|
234 |
+
233: n02106382
|
235 |
+
234: n02106550
|
236 |
+
235: n02106662
|
237 |
+
236: n02107142
|
238 |
+
237: n02107312
|
239 |
+
238: n02107574
|
240 |
+
239: n02107683
|
241 |
+
240: n02107908
|
242 |
+
241: n02108000
|
243 |
+
242: n02108089
|
244 |
+
243: n02108422
|
245 |
+
244: n02108551
|
246 |
+
245: n02108915
|
247 |
+
246: n02109047
|
248 |
+
247: n02109525
|
249 |
+
248: n02109961
|
250 |
+
249: n02110063
|
251 |
+
250: n02110185
|
252 |
+
251: n02110341
|
253 |
+
252: n02110627
|
254 |
+
253: n02110806
|
255 |
+
254: n02110958
|
256 |
+
255: n02111129
|
257 |
+
256: n02111277
|
258 |
+
257: n02111500
|
259 |
+
258: n02111889
|
260 |
+
259: n02112018
|
261 |
+
260: n02112137
|
262 |
+
261: n02112350
|
263 |
+
262: n02112706
|
264 |
+
263: n02113023
|
265 |
+
264: n02113186
|
266 |
+
265: n02113624
|
267 |
+
266: n02113712
|
268 |
+
267: n02113799
|
269 |
+
268: n02113978
|
270 |
+
269: n02114367
|
271 |
+
270: n02114548
|
272 |
+
271: n02114712
|
273 |
+
272: n02114855
|
274 |
+
273: n02115641
|
275 |
+
274: n02115913
|
276 |
+
275: n02116738
|
277 |
+
276: n02117135
|
278 |
+
277: n02119022
|
279 |
+
278: n02119789
|
280 |
+
279: n02120079
|
281 |
+
280: n02120505
|
282 |
+
281: n02123045
|
283 |
+
282: n02123159
|
284 |
+
283: n02123394
|
285 |
+
284: n02123597
|
286 |
+
285: n02124075
|
287 |
+
286: n02125311
|
288 |
+
287: n02127052
|
289 |
+
288: n02128385
|
290 |
+
289: n02128757
|
291 |
+
290: n02128925
|
292 |
+
291: n02129165
|
293 |
+
292: n02129604
|
294 |
+
293: n02130308
|
295 |
+
294: n02132136
|
296 |
+
295: n02133161
|
297 |
+
296: n02134084
|
298 |
+
297: n02134418
|
299 |
+
298: n02137549
|
300 |
+
299: n02138441
|
301 |
+
300: n02165105
|
302 |
+
301: n02165456
|
303 |
+
302: n02167151
|
304 |
+
303: n02168699
|
305 |
+
304: n02169497
|
306 |
+
305: n02172182
|
307 |
+
306: n02174001
|
308 |
+
307: n02177972
|
309 |
+
308: n03373237
|
310 |
+
309: n07975909
|
311 |
+
310: n02219486
|
312 |
+
311: n02226429
|
313 |
+
312: n02229544
|
314 |
+
313: n02231487
|
315 |
+
314: n02233338
|
316 |
+
315: n02236044
|
317 |
+
316: n02256656
|
318 |
+
317: n02259212
|
319 |
+
318: n02264363
|
320 |
+
319: n02268443
|
321 |
+
320: n02268853
|
322 |
+
321: n02276258
|
323 |
+
322: n02277742
|
324 |
+
323: n02279972
|
325 |
+
324: n02280649
|
326 |
+
325: n02281406
|
327 |
+
326: n02281787
|
328 |
+
327: n02317335
|
329 |
+
328: n02319095
|
330 |
+
329: n02321529
|
331 |
+
330: n02325366
|
332 |
+
331: n02326432
|
333 |
+
332: n02328150
|
334 |
+
333: n02342885
|
335 |
+
334: n02346627
|
336 |
+
335: n02356798
|
337 |
+
336: n02361337
|
338 |
+
337: n05262120
|
339 |
+
338: n02364673
|
340 |
+
339: n02389026
|
341 |
+
340: n02391049
|
342 |
+
341: n02395406
|
343 |
+
342: n02396427
|
344 |
+
343: n02397096
|
345 |
+
344: n02398521
|
346 |
+
345: n02403003
|
347 |
+
346: n02408429
|
348 |
+
347: n02410509
|
349 |
+
348: n02412080
|
350 |
+
349: n02415577
|
351 |
+
350: n02417914
|
352 |
+
351: n02422106
|
353 |
+
352: n02422699
|
354 |
+
353: n02423022
|
355 |
+
354: n02437312
|
356 |
+
355: n02437616
|
357 |
+
356: n10771990
|
358 |
+
357: n14765497
|
359 |
+
358: n02443114
|
360 |
+
359: n02443484
|
361 |
+
360: n14765785
|
362 |
+
361: n02445715
|
363 |
+
362: n02447366
|
364 |
+
363: n02454379
|
365 |
+
364: n02457408
|
366 |
+
365: n02480495
|
367 |
+
366: n02480855
|
368 |
+
367: n02481823
|
369 |
+
368: n02483362
|
370 |
+
369: n02483708
|
371 |
+
370: n02484975
|
372 |
+
371: n02486261
|
373 |
+
372: n02486410
|
374 |
+
373: n02487347
|
375 |
+
374: n02488291
|
376 |
+
375: n02488702
|
377 |
+
376: n02489166
|
378 |
+
377: n02490219
|
379 |
+
378: n02492035
|
380 |
+
379: n02492660
|
381 |
+
380: n02493509
|
382 |
+
381: n02493793
|
383 |
+
382: n02494079
|
384 |
+
383: n02497673
|
385 |
+
384: n02500267
|
386 |
+
385: n02504013
|
387 |
+
386: n02504458
|
388 |
+
387: n02509815
|
389 |
+
388: n02510455
|
390 |
+
389: n02514041
|
391 |
+
390: n07783967
|
392 |
+
391: n02536864
|
393 |
+
392: n02606052
|
394 |
+
393: n02607072
|
395 |
+
394: n02640242
|
396 |
+
395: n02641379
|
397 |
+
396: n02643566
|
398 |
+
397: n02655020
|
399 |
+
398: n02666347
|
400 |
+
399: n02667093
|
401 |
+
400: n02669723
|
402 |
+
401: n02672831
|
403 |
+
402: n02676566
|
404 |
+
403: n02687172
|
405 |
+
404: n02690373
|
406 |
+
405: n02692877
|
407 |
+
406: n02699494
|
408 |
+
407: n02701002
|
409 |
+
408: n02704792
|
410 |
+
409: n02708093
|
411 |
+
410: n02727426
|
412 |
+
411: n08496334
|
413 |
+
412: n02747177
|
414 |
+
413: n02749479
|
415 |
+
414: n02769748
|
416 |
+
415: n02776631
|
417 |
+
416: n02777292
|
418 |
+
417: n02782329
|
419 |
+
418: n02783161
|
420 |
+
419: n02786058
|
421 |
+
420: n02787622
|
422 |
+
421: n02788148
|
423 |
+
422: n02790996
|
424 |
+
423: n02791124
|
425 |
+
424: n02791270
|
426 |
+
425: n02793495
|
427 |
+
426: n02794156
|
428 |
+
427: n02795169
|
429 |
+
428: n02797295
|
430 |
+
429: n02799071
|
431 |
+
430: n02802426
|
432 |
+
431: n02804515
|
433 |
+
432: n02804610
|
434 |
+
433: n02807133
|
435 |
+
434: n02808304
|
436 |
+
435: n02808440
|
437 |
+
436: n02814533
|
438 |
+
437: n02814860
|
439 |
+
438: n02815834
|
440 |
+
439: n02817516
|
441 |
+
440: n02823428
|
442 |
+
441: n02823750
|
443 |
+
442: n02825657
|
444 |
+
443: n02834397
|
445 |
+
444: n02835271
|
446 |
+
445: n02837789
|
447 |
+
446: n02840245
|
448 |
+
447: n02841315
|
449 |
+
448: n02843684
|
450 |
+
449: n02859443
|
451 |
+
450: n02860847
|
452 |
+
451: n02865351
|
453 |
+
452: n02869837
|
454 |
+
453: n02870880
|
455 |
+
454: n02871525
|
456 |
+
455: n02877765
|
457 |
+
456: n02880308
|
458 |
+
457: n02883205
|
459 |
+
458: n02892201
|
460 |
+
459: n02892767
|
461 |
+
460: n02894605
|
462 |
+
461: n02895154
|
463 |
+
462: n12520864
|
464 |
+
463: n02909870
|
465 |
+
464: n02910353
|
466 |
+
465: n02916936
|
467 |
+
466: n02917067
|
468 |
+
467: n02927161
|
469 |
+
468: n02930766
|
470 |
+
469: n02939185
|
471 |
+
470: n02948072
|
472 |
+
471: n02950826
|
473 |
+
472: n02951358
|
474 |
+
473: n02951585
|
475 |
+
474: n02963159
|
476 |
+
475: n02965783
|
477 |
+
476: n02966193
|
478 |
+
477: n02966687
|
479 |
+
478: n02971356
|
480 |
+
479: n02974003
|
481 |
+
480: n02977058
|
482 |
+
481: n02978881
|
483 |
+
482: n02979186
|
484 |
+
483: n02980441
|
485 |
+
484: n02981792
|
486 |
+
485: n02988304
|
487 |
+
486: n02992211
|
488 |
+
487: n02992529
|
489 |
+
488: n13652994
|
490 |
+
489: n03000134
|
491 |
+
490: n03000247
|
492 |
+
491: n03000684
|
493 |
+
492: n03014705
|
494 |
+
493: n03016953
|
495 |
+
494: n03017168
|
496 |
+
495: n03018349
|
497 |
+
496: n03026506
|
498 |
+
497: n03028079
|
499 |
+
498: n03032252
|
500 |
+
499: n03041632
|
501 |
+
500: n03042490
|
502 |
+
501: n03045698
|
503 |
+
502: n03047690
|
504 |
+
503: n03062245
|
505 |
+
504: n03063599
|
506 |
+
505: n03063689
|
507 |
+
506: n03065424
|
508 |
+
507: n03075370
|
509 |
+
508: n03085013
|
510 |
+
509: n03089624
|
511 |
+
510: n03095699
|
512 |
+
511: n03100240
|
513 |
+
512: n03109150
|
514 |
+
513: n03110669
|
515 |
+
514: n03124043
|
516 |
+
515: n03124170
|
517 |
+
516: n15142452
|
518 |
+
517: n03126707
|
519 |
+
518: n03127747
|
520 |
+
519: n03127925
|
521 |
+
520: n03131574
|
522 |
+
521: n03133878
|
523 |
+
522: n03134739
|
524 |
+
523: n03141823
|
525 |
+
524: n03146219
|
526 |
+
525: n03160309
|
527 |
+
526: n03179701
|
528 |
+
527: n03180011
|
529 |
+
528: n03187595
|
530 |
+
529: n03188531
|
531 |
+
530: n03196217
|
532 |
+
531: n03197337
|
533 |
+
532: n03201208
|
534 |
+
533: n03207743
|
535 |
+
534: n03207941
|
536 |
+
535: n03208938
|
537 |
+
536: n03216828
|
538 |
+
537: n03218198
|
539 |
+
538: n13872072
|
540 |
+
539: n03223299
|
541 |
+
540: n03240683
|
542 |
+
541: n03249569
|
543 |
+
542: n07647870
|
544 |
+
543: n03255030
|
545 |
+
544: n03259401
|
546 |
+
545: n03271574
|
547 |
+
546: n03272010
|
548 |
+
547: n03272562
|
549 |
+
548: n03290653
|
550 |
+
549: n13869788
|
551 |
+
550: n03297495
|
552 |
+
551: n03314780
|
553 |
+
552: n03325584
|
554 |
+
553: n03337140
|
555 |
+
554: n03344393
|
556 |
+
555: n03345487
|
557 |
+
556: n03347037
|
558 |
+
557: n03355925
|
559 |
+
558: n03372029
|
560 |
+
559: n03376595
|
561 |
+
560: n03379051
|
562 |
+
561: n03384352
|
563 |
+
562: n03388043
|
564 |
+
563: n03388183
|
565 |
+
564: n03388549
|
566 |
+
565: n03393912
|
567 |
+
566: n03394916
|
568 |
+
567: n03400231
|
569 |
+
568: n03404251
|
570 |
+
569: n03417042
|
571 |
+
570: n03424325
|
572 |
+
571: n03425413
|
573 |
+
572: n03443371
|
574 |
+
573: n03444034
|
575 |
+
574: n03445777
|
576 |
+
575: n03445924
|
577 |
+
576: n03447447
|
578 |
+
577: n03447721
|
579 |
+
578: n08286342
|
580 |
+
579: n03452741
|
581 |
+
580: n03457902
|
582 |
+
581: n03459775
|
583 |
+
582: n03461385
|
584 |
+
583: n03467068
|
585 |
+
584: n03476684
|
586 |
+
585: n03476991
|
587 |
+
586: n03478589
|
588 |
+
587: n03482001
|
589 |
+
588: n03482405
|
590 |
+
589: n03483316
|
591 |
+
590: n03485407
|
592 |
+
591: n03485794
|
593 |
+
592: n03492542
|
594 |
+
593: n03494278
|
595 |
+
594: n03495570
|
596 |
+
595: n10161363
|
597 |
+
596: n03498962
|
598 |
+
597: n03527565
|
599 |
+
598: n03529860
|
600 |
+
599: n09218315
|
601 |
+
600: n03532672
|
602 |
+
601: n03534580
|
603 |
+
602: n03535780
|
604 |
+
603: n03538406
|
605 |
+
604: n03544143
|
606 |
+
605: n03584254
|
607 |
+
606: n03584829
|
608 |
+
607: n03590841
|
609 |
+
608: n03594734
|
610 |
+
609: n03594945
|
611 |
+
610: n03595614
|
612 |
+
611: n03598930
|
613 |
+
612: n03599486
|
614 |
+
613: n03602883
|
615 |
+
614: n03617480
|
616 |
+
615: n03623198
|
617 |
+
616: n15102712
|
618 |
+
617: n03630383
|
619 |
+
618: n03633091
|
620 |
+
619: n03637318
|
621 |
+
620: n03642806
|
622 |
+
621: n03649909
|
623 |
+
622: n03657121
|
624 |
+
623: n03658185
|
625 |
+
624: n07977870
|
626 |
+
625: n03662601
|
627 |
+
626: n03666591
|
628 |
+
627: n03670208
|
629 |
+
628: n03673027
|
630 |
+
629: n03676483
|
631 |
+
630: n03680355
|
632 |
+
631: n03690938
|
633 |
+
632: n03691459
|
634 |
+
633: n03692522
|
635 |
+
634: n03697007
|
636 |
+
635: n03706229
|
637 |
+
636: n03709823
|
638 |
+
637: n03710193
|
639 |
+
638: n03710637
|
640 |
+
639: n03710721
|
641 |
+
640: n03717622
|
642 |
+
641: n03720891
|
643 |
+
642: n03721384
|
644 |
+
643: n03725035
|
645 |
+
644: n03729826
|
646 |
+
645: n03733131
|
647 |
+
646: n03733281
|
648 |
+
647: n03733805
|
649 |
+
648: n03742115
|
650 |
+
649: n03743016
|
651 |
+
650: n03759954
|
652 |
+
651: n03761084
|
653 |
+
652: n03763968
|
654 |
+
653: n03764736
|
655 |
+
654: n03769881
|
656 |
+
655: n03770439
|
657 |
+
656: n03770679
|
658 |
+
657: n03773504
|
659 |
+
658: n03775071
|
660 |
+
659: n03775546
|
661 |
+
660: n03776460
|
662 |
+
661: n03777568
|
663 |
+
662: n03777754
|
664 |
+
663: n03781244
|
665 |
+
664: n03782006
|
666 |
+
665: n03785016
|
667 |
+
666: n14955889
|
668 |
+
667: n03787032
|
669 |
+
668: n03788195
|
670 |
+
669: n03788365
|
671 |
+
670: n03791053
|
672 |
+
671: n03792782
|
673 |
+
672: n03792972
|
674 |
+
673: n03793489
|
675 |
+
674: n03794056
|
676 |
+
675: n03796401
|
677 |
+
676: n03803284
|
678 |
+
677: n13652335
|
679 |
+
678: n03814639
|
680 |
+
679: n03814906
|
681 |
+
680: n03825788
|
682 |
+
681: n03832673
|
683 |
+
682: n03837869
|
684 |
+
683: n03838899
|
685 |
+
684: n03840681
|
686 |
+
685: n03841143
|
687 |
+
686: n03843555
|
688 |
+
687: n03854065
|
689 |
+
688: n03857828
|
690 |
+
689: n03866082
|
691 |
+
690: n03868242
|
692 |
+
691: n03868863
|
693 |
+
692: n07281099
|
694 |
+
693: n03873416
|
695 |
+
694: n03874293
|
696 |
+
695: n03874599
|
697 |
+
696: n03876231
|
698 |
+
697: n03877472
|
699 |
+
698: n08053121
|
700 |
+
699: n03884397
|
701 |
+
700: n03887697
|
702 |
+
701: n03888257
|
703 |
+
702: n03888605
|
704 |
+
703: n03891251
|
705 |
+
704: n03891332
|
706 |
+
705: n03895866
|
707 |
+
706: n03899768
|
708 |
+
707: n03902125
|
709 |
+
708: n03903868
|
710 |
+
709: n03908618
|
711 |
+
710: n03908714
|
712 |
+
711: n03916031
|
713 |
+
712: n03920288
|
714 |
+
713: n03924679
|
715 |
+
714: n03929660
|
716 |
+
715: n03929855
|
717 |
+
716: n03930313
|
718 |
+
717: n03930630
|
719 |
+
718: n03934042
|
720 |
+
719: n03935335
|
721 |
+
720: n03937543
|
722 |
+
721: n03938244
|
723 |
+
722: n03942813
|
724 |
+
723: n03944341
|
725 |
+
724: n03947888
|
726 |
+
725: n03950228
|
727 |
+
726: n03954731
|
728 |
+
727: n03956157
|
729 |
+
728: n03958227
|
730 |
+
729: n03961711
|
731 |
+
730: n03967562
|
732 |
+
731: n03970156
|
733 |
+
732: n03976467
|
734 |
+
733: n08620881
|
735 |
+
734: n03977966
|
736 |
+
735: n03980874
|
737 |
+
736: n03982430
|
738 |
+
737: n03983396
|
739 |
+
738: n03991062
|
740 |
+
739: n03992509
|
741 |
+
740: n03995372
|
742 |
+
741: n03998194
|
743 |
+
742: n04004767
|
744 |
+
743: n13937284
|
745 |
+
744: n04008634
|
746 |
+
745: n04009801
|
747 |
+
746: n04019541
|
748 |
+
747: n04023962
|
749 |
+
748: n13413294
|
750 |
+
749: n04033901
|
751 |
+
750: n04033995
|
752 |
+
751: n04037443
|
753 |
+
752: n04039381
|
754 |
+
753: n09403211
|
755 |
+
754: n04041544
|
756 |
+
755: n04044716
|
757 |
+
756: n04049303
|
758 |
+
757: n04065272
|
759 |
+
758: n07056680
|
760 |
+
759: n04069434
|
761 |
+
760: n04070727
|
762 |
+
761: n04074963
|
763 |
+
762: n04081281
|
764 |
+
763: n04086273
|
765 |
+
764: n04090263
|
766 |
+
765: n04099969
|
767 |
+
766: n04111531
|
768 |
+
767: n04116512
|
769 |
+
768: n04118538
|
770 |
+
769: n04118776
|
771 |
+
770: n04120489
|
772 |
+
771: n04125116
|
773 |
+
772: n04127249
|
774 |
+
773: n04131690
|
775 |
+
774: n04133789
|
776 |
+
775: n04136333
|
777 |
+
776: n04141076
|
778 |
+
777: n04141327
|
779 |
+
778: n04141975
|
780 |
+
779: n04146614
|
781 |
+
780: n04147291
|
782 |
+
781: n04149813
|
783 |
+
782: n04152593
|
784 |
+
783: n04154340
|
785 |
+
784: n07917272
|
786 |
+
785: n04162706
|
787 |
+
786: n04179913
|
788 |
+
787: n04192698
|
789 |
+
788: n04200800
|
790 |
+
789: n04201297
|
791 |
+
790: n04204238
|
792 |
+
791: n04204347
|
793 |
+
792: n04208427
|
794 |
+
793: n04209133
|
795 |
+
794: n04209239
|
796 |
+
795: n04228054
|
797 |
+
796: n04229816
|
798 |
+
797: n04235860
|
799 |
+
798: n04238763
|
800 |
+
799: n04239074
|
801 |
+
800: n04243546
|
802 |
+
801: n04251144
|
803 |
+
802: n04252077
|
804 |
+
803: n04252225
|
805 |
+
804: n04254120
|
806 |
+
805: n04254680
|
807 |
+
806: n04254777
|
808 |
+
807: n04258138
|
809 |
+
808: n04259630
|
810 |
+
809: n04263257
|
811 |
+
810: n04264628
|
812 |
+
811: n04265275
|
813 |
+
812: n04266014
|
814 |
+
813: n04270147
|
815 |
+
814: n04273569
|
816 |
+
815: n04275363
|
817 |
+
816: n05605498
|
818 |
+
817: n04285008
|
819 |
+
818: n04286575
|
820 |
+
819: n08646566
|
821 |
+
820: n04310018
|
822 |
+
821: n04311004
|
823 |
+
822: n04311174
|
824 |
+
823: n04317175
|
825 |
+
824: n04325704
|
826 |
+
825: n04326547
|
827 |
+
826: n04328186
|
828 |
+
827: n04330267
|
829 |
+
828: n04332243
|
830 |
+
829: n04335435
|
831 |
+
830: n04337157
|
832 |
+
831: n04344873
|
833 |
+
832: n04346328
|
834 |
+
833: n04347754
|
835 |
+
834: n04350905
|
836 |
+
835: n04355338
|
837 |
+
836: n04355933
|
838 |
+
837: n04356056
|
839 |
+
838: n04357314
|
840 |
+
839: n04366367
|
841 |
+
840: n04367480
|
842 |
+
841: n04370456
|
843 |
+
842: n04371430
|
844 |
+
843: n14009946
|
845 |
+
844: n04372370
|
846 |
+
845: n04376876
|
847 |
+
846: n04380533
|
848 |
+
847: n04389033
|
849 |
+
848: n04392985
|
850 |
+
849: n04398044
|
851 |
+
850: n04399382
|
852 |
+
851: n04404412
|
853 |
+
852: n04409515
|
854 |
+
853: n04417672
|
855 |
+
854: n04418357
|
856 |
+
855: n04423845
|
857 |
+
856: n04428191
|
858 |
+
857: n04429376
|
859 |
+
858: n04435653
|
860 |
+
859: n04442312
|
861 |
+
860: n04443257
|
862 |
+
861: n04447861
|
863 |
+
862: n04456115
|
864 |
+
863: n04458633
|
865 |
+
864: n04461696
|
866 |
+
865: n04462240
|
867 |
+
866: n04465666
|
868 |
+
867: n04467665
|
869 |
+
868: n04476259
|
870 |
+
869: n04479046
|
871 |
+
870: n04482393
|
872 |
+
871: n04483307
|
873 |
+
872: n04485082
|
874 |
+
873: n04486054
|
875 |
+
874: n04487081
|
876 |
+
875: n04487394
|
877 |
+
876: n04493381
|
878 |
+
877: n04501370
|
879 |
+
878: n04505470
|
880 |
+
879: n04507155
|
881 |
+
880: n04509417
|
882 |
+
881: n04515003
|
883 |
+
882: n04517823
|
884 |
+
883: n04522168
|
885 |
+
884: n04523525
|
886 |
+
885: n04525038
|
887 |
+
886: n04525305
|
888 |
+
887: n04532106
|
889 |
+
888: n04532670
|
890 |
+
889: n04536866
|
891 |
+
890: n04540053
|
892 |
+
891: n04542943
|
893 |
+
892: n04548280
|
894 |
+
893: n04548362
|
895 |
+
894: n04550184
|
896 |
+
895: n04552348
|
897 |
+
896: n04553703
|
898 |
+
897: n04554684
|
899 |
+
898: n04557648
|
900 |
+
899: n04560804
|
901 |
+
900: n04562935
|
902 |
+
901: n04579145
|
903 |
+
902: n04579667
|
904 |
+
903: n04584207
|
905 |
+
904: n04589890
|
906 |
+
905: n04590129
|
907 |
+
906: n04591157
|
908 |
+
907: n04591713
|
909 |
+
908: n10782135
|
910 |
+
909: n04596742
|
911 |
+
910: n04598010
|
912 |
+
911: n04599235
|
913 |
+
912: n04604644
|
914 |
+
913: n14423870
|
915 |
+
914: n04612504
|
916 |
+
915: n04613696
|
917 |
+
916: n06359193
|
918 |
+
917: n06596364
|
919 |
+
918: n06785654
|
920 |
+
919: n06794110
|
921 |
+
920: n06874185
|
922 |
+
921: n07248320
|
923 |
+
922: n07565083
|
924 |
+
923: n07657664
|
925 |
+
924: n07583066
|
926 |
+
925: n07584110
|
927 |
+
926: n07590611
|
928 |
+
927: n07613480
|
929 |
+
928: n07614500
|
930 |
+
929: n07615774
|
931 |
+
930: n07684084
|
932 |
+
931: n07693725
|
933 |
+
932: n07695742
|
934 |
+
933: n07697313
|
935 |
+
934: n07697537
|
936 |
+
935: n07711569
|
937 |
+
936: n07714571
|
938 |
+
937: n07714990
|
939 |
+
938: n07715103
|
940 |
+
939: n12159804
|
941 |
+
940: n12160303
|
942 |
+
941: n12160857
|
943 |
+
942: n07717556
|
944 |
+
943: n07718472
|
945 |
+
944: n07718747
|
946 |
+
945: n07720875
|
947 |
+
946: n07730033
|
948 |
+
947: n13001041
|
949 |
+
948: n07742313
|
950 |
+
949: n12630144
|
951 |
+
950: n14991210
|
952 |
+
951: n07749582
|
953 |
+
952: n07753113
|
954 |
+
953: n07753275
|
955 |
+
954: n07753592
|
956 |
+
955: n07754684
|
957 |
+
956: n07760859
|
958 |
+
957: n07768694
|
959 |
+
958: n07802026
|
960 |
+
959: n07831146
|
961 |
+
960: n07836838
|
962 |
+
961: n07860988
|
963 |
+
962: n07871810
|
964 |
+
963: n07873807
|
965 |
+
964: n07875152
|
966 |
+
965: n07880968
|
967 |
+
966: n07892512
|
968 |
+
967: n07920052
|
969 |
+
968: n13904665
|
970 |
+
969: n07932039
|
971 |
+
970: n09193705
|
972 |
+
971: n09229709
|
973 |
+
972: n09246464
|
974 |
+
973: n09256479
|
975 |
+
974: n09288635
|
976 |
+
975: n09332890
|
977 |
+
976: n09399592
|
978 |
+
977: n09421951
|
979 |
+
978: n09428293
|
980 |
+
979: n09468604
|
981 |
+
980: n09472597
|
982 |
+
981: n09835506
|
983 |
+
982: n10148035
|
984 |
+
983: n10565667
|
985 |
+
984: n11879895
|
986 |
+
985: n11939491
|
987 |
+
986: n12057211
|
988 |
+
987: n12144580
|
989 |
+
988: n12267677
|
990 |
+
989: n12620546
|
991 |
+
990: n12768682
|
992 |
+
991: n12985857
|
993 |
+
992: n12998815
|
994 |
+
993: n13037406
|
995 |
+
994: n13040303
|
996 |
+
995: n13044778
|
997 |
+
996: n13052670
|
998 |
+
997: n13054560
|
999 |
+
998: n13133613
|
1000 |
+
999: n15075141
|
gligen/ldm/data/lsun.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
|
9 |
+
class LSUNBase(Dataset):
|
10 |
+
def __init__(self,
|
11 |
+
txt_file,
|
12 |
+
data_root,
|
13 |
+
size=None,
|
14 |
+
interpolation="bicubic",
|
15 |
+
flip_p=0.5
|
16 |
+
):
|
17 |
+
self.data_paths = txt_file
|
18 |
+
self.data_root = data_root
|
19 |
+
with open(self.data_paths, "r") as f:
|
20 |
+
self.image_paths = f.read().splitlines()
|
21 |
+
self._length = len(self.image_paths)
|
22 |
+
self.labels = {
|
23 |
+
"relative_file_path_": [l for l in self.image_paths],
|
24 |
+
"file_path_": [os.path.join(self.data_root, l)
|
25 |
+
for l in self.image_paths],
|
26 |
+
}
|
27 |
+
|
28 |
+
self.size = size
|
29 |
+
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
+
"bilinear": PIL.Image.BILINEAR,
|
31 |
+
"bicubic": PIL.Image.BICUBIC,
|
32 |
+
"lanczos": PIL.Image.LANCZOS,
|
33 |
+
}[interpolation]
|
34 |
+
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self._length
|
38 |
+
|
39 |
+
def __getitem__(self, i):
|
40 |
+
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
+
image = Image.open(example["file_path_"])
|
42 |
+
if not image.mode == "RGB":
|
43 |
+
image = image.convert("RGB")
|
44 |
+
|
45 |
+
# default to score-sde preprocessing
|
46 |
+
img = np.array(image).astype(np.uint8)
|
47 |
+
crop = min(img.shape[0], img.shape[1])
|
48 |
+
h, w, = img.shape[0], img.shape[1]
|
49 |
+
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
+
(w - crop) // 2:(w + crop) // 2]
|
51 |
+
|
52 |
+
image = Image.fromarray(img)
|
53 |
+
if self.size is not None:
|
54 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
+
|
56 |
+
image = self.flip(image)
|
57 |
+
image = np.array(image).astype(np.uint8)
|
58 |
+
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
+
return example
|
60 |
+
|
61 |
+
|
62 |
+
class LSUNChurchesTrain(LSUNBase):
|
63 |
+
def __init__(self, **kwargs):
|
64 |
+
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class LSUNChurchesValidation(LSUNBase):
|
68 |
+
def __init__(self, flip_p=0., **kwargs):
|
69 |
+
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
+
flip_p=flip_p, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
class LSUNBedroomsTrain(LSUNBase):
|
74 |
+
def __init__(self, **kwargs):
|
75 |
+
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
+
|
77 |
+
|
78 |
+
class LSUNBedroomsValidation(LSUNBase):
|
79 |
+
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
+
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
+
flip_p=flip_p, **kwargs)
|
82 |
+
|
83 |
+
|
84 |
+
class LSUNCatsTrain(LSUNBase):
|
85 |
+
def __init__(self, **kwargs):
|
86 |
+
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
class LSUNCatsValidation(LSUNBase):
|
90 |
+
def __init__(self, flip_p=0., **kwargs):
|
91 |
+
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
+
flip_p=flip_p, **kwargs)
|
gligen/ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
gligen/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
#import pytorch_lightning as pl
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from contextlib import contextmanager
|
6 |
+
|
7 |
+
# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
8 |
+
|
9 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
10 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
11 |
+
|
12 |
+
from ldm.util import instantiate_from_config
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
class AutoencoderKL(nn.Module):
|
18 |
+
def __init__(self,
|
19 |
+
ddconfig,
|
20 |
+
embed_dim,
|
21 |
+
scale_factor=1
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.encoder = Encoder(**ddconfig)
|
25 |
+
self.decoder = Decoder(**ddconfig)
|
26 |
+
assert ddconfig["double_z"]
|
27 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
28 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
29 |
+
self.embed_dim = embed_dim
|
30 |
+
self.scale_factor = scale_factor
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def encode(self, x):
|
35 |
+
h = self.encoder(x)
|
36 |
+
moments = self.quant_conv(h)
|
37 |
+
posterior = DiagonalGaussianDistribution(moments)
|
38 |
+
return posterior.sample() * self.scale_factor
|
39 |
+
|
40 |
+
def decode(self, z):
|
41 |
+
z = 1. / self.scale_factor * z
|
42 |
+
z = self.post_quant_conv(z)
|
43 |
+
dec = self.decoder(z)
|
44 |
+
return dec
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
gligen/ldm/models/diffusion/__init__.py
ADDED
File without changes
|
gligen/ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
gligen/ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
7 |
+
|
8 |
+
|
9 |
+
class DDIMSampler(object):
|
10 |
+
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
|
11 |
+
super().__init__()
|
12 |
+
self.diffusion = diffusion
|
13 |
+
self.model = model
|
14 |
+
self.device = diffusion.betas.device
|
15 |
+
self.ddpm_num_timesteps = diffusion.num_timesteps
|
16 |
+
self.schedule = schedule
|
17 |
+
self.alpha_generator_func = alpha_generator_func
|
18 |
+
self.set_alpha_scale = set_alpha_scale
|
19 |
+
|
20 |
+
|
21 |
+
def register_buffer(self, name, attr):
|
22 |
+
if type(attr) == torch.Tensor:
|
23 |
+
attr = attr.to(self.device)
|
24 |
+
setattr(self, name, attr)
|
25 |
+
|
26 |
+
|
27 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.):
|
28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=False)
|
30 |
+
alphas_cumprod = self.diffusion.alphas_cumprod
|
31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
33 |
+
|
34 |
+
self.register_buffer('betas', to_torch(self.diffusion.betas))
|
35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
|
37 |
+
|
38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
44 |
+
|
45 |
+
# ddim sampling parameters
|
46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
47 |
+
ddim_timesteps=self.ddim_timesteps,
|
48 |
+
eta=ddim_eta,verbose=False)
|
49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
57 |
+
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
|
61 |
+
self.make_schedule(ddim_num_steps=S)
|
62 |
+
return self.ddim_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0)
|
63 |
+
|
64 |
+
|
65 |
+
@torch.no_grad()
|
66 |
+
def ddim_sampling(self, shape, input, uc, guidance_scale=1, mask=None, x0=None):
|
67 |
+
b = shape[0]
|
68 |
+
|
69 |
+
img = input["x"]
|
70 |
+
if img == None:
|
71 |
+
img = torch.randn(shape, device=self.device)
|
72 |
+
input["x"] = img
|
73 |
+
|
74 |
+
|
75 |
+
time_range = np.flip(self.ddim_timesteps)
|
76 |
+
total_steps = self.ddim_timesteps.shape[0]
|
77 |
+
|
78 |
+
#iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
79 |
+
iterator = time_range
|
80 |
+
|
81 |
+
if self.alpha_generator_func != None:
|
82 |
+
alphas = self.alpha_generator_func(len(iterator))
|
83 |
+
|
84 |
+
|
85 |
+
for i, step in enumerate(iterator):
|
86 |
+
|
87 |
+
# set alpha
|
88 |
+
if self.alpha_generator_func != None:
|
89 |
+
self.set_alpha_scale(self.model, alphas[i])
|
90 |
+
|
91 |
+
# run
|
92 |
+
index = total_steps - i - 1
|
93 |
+
input["timesteps"] = torch.full((b,), step, device=self.device, dtype=torch.long)
|
94 |
+
|
95 |
+
if mask is not None:
|
96 |
+
assert x0 is not None
|
97 |
+
img_orig = self.diffusion.q_sample( x0, input["timesteps"] )
|
98 |
+
img = img_orig * mask + (1. - mask) * img
|
99 |
+
input["x"] = img
|
100 |
+
|
101 |
+
img, pred_x0 = self.p_sample_ddim(input, index=index, uc=uc, guidance_scale=guidance_scale)
|
102 |
+
input["x"] = img
|
103 |
+
|
104 |
+
return img
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def p_sample_ddim(self, input, index, uc=None, guidance_scale=1):
|
109 |
+
|
110 |
+
|
111 |
+
e_t = self.model(input)
|
112 |
+
if uc is not None and guidance_scale != 1:
|
113 |
+
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc)
|
114 |
+
if "inpainting_extra_input" in input:
|
115 |
+
unconditional_input["inpainting_extra_input"] = input["inpainting_extra_input"]
|
116 |
+
e_t_uncond = self.model( unconditional_input )
|
117 |
+
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
|
118 |
+
|
119 |
+
# select parameters corresponding to the currently considered timestep
|
120 |
+
b = input["x"].shape[0]
|
121 |
+
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
|
122 |
+
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
|
123 |
+
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
|
124 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
|
125 |
+
|
126 |
+
# current prediction for x_0
|
127 |
+
pred_x0 = (input["x"] - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
128 |
+
|
129 |
+
# direction pointing to x_t
|
130 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
131 |
+
noise = sigma_t * torch.randn_like( input["x"] )
|
132 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
133 |
+
|
134 |
+
return x_prev, pred_x0
|
gligen/ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class DDPM(nn.Module):
|
12 |
+
def __init__(self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.v_posterior = 0
|
16 |
+
self.register_schedule(beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
17 |
+
|
18 |
+
|
19 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
20 |
+
|
21 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
22 |
+
alphas = 1. - betas
|
23 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
24 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
25 |
+
|
26 |
+
timesteps, = betas.shape
|
27 |
+
self.num_timesteps = int(timesteps)
|
28 |
+
self.linear_start = linear_start
|
29 |
+
self.linear_end = linear_end
|
30 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
31 |
+
|
32 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
33 |
+
|
34 |
+
self.register_buffer('betas', to_torch(betas))
|
35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
37 |
+
|
38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
44 |
+
|
45 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
46 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( 1. - alphas_cumprod) + self.v_posterior * betas
|
47 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
48 |
+
|
49 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
50 |
+
|
51 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
52 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
53 |
+
self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
54 |
+
self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
gligen/ldm/models/diffusion/gaussian_smoothing.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numbers
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class GaussianSmoothing(nn.Module):
|
9 |
+
"""
|
10 |
+
Apply gaussian smoothing on a
|
11 |
+
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
|
12 |
+
in the input using a depthwise convolution.
|
13 |
+
Arguments:
|
14 |
+
channels (int, sequence): Number of channels of the input tensors. Output will
|
15 |
+
have this number of channels as well.
|
16 |
+
kernel_size (int, sequence): Size of the gaussian kernel.
|
17 |
+
sigma (float, sequence): Standard deviation of the gaussian kernel.
|
18 |
+
dim (int, optional): The number of dimensions of the data.
|
19 |
+
Default value is 2 (spatial).
|
20 |
+
"""
|
21 |
+
def __init__(self, channels, kernel_size, sigma, dim=2):
|
22 |
+
super(GaussianSmoothing, self).__init__()
|
23 |
+
if isinstance(kernel_size, numbers.Number):
|
24 |
+
kernel_size = [kernel_size] * dim
|
25 |
+
if isinstance(sigma, numbers.Number):
|
26 |
+
sigma = [sigma] * dim
|
27 |
+
|
28 |
+
# The gaussian kernel is the product of the
|
29 |
+
# gaussian function of each dimension.
|
30 |
+
kernel = 1
|
31 |
+
meshgrids = torch.meshgrid(
|
32 |
+
[
|
33 |
+
torch.arange(size, dtype=torch.float32)
|
34 |
+
for size in kernel_size
|
35 |
+
]
|
36 |
+
)
|
37 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
38 |
+
mean = (size - 1) / 2
|
39 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
|
40 |
+
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
|
41 |
+
|
42 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
43 |
+
kernel = kernel / torch.sum(kernel)
|
44 |
+
|
45 |
+
# Reshape to depthwise convolutional weight
|
46 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
47 |
+
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
|
48 |
+
|
49 |
+
self.register_buffer('weight', kernel)
|
50 |
+
self.groups = channels
|
51 |
+
|
52 |
+
if dim == 1:
|
53 |
+
self.conv = F.conv1d
|
54 |
+
elif dim == 2:
|
55 |
+
self.conv = F.conv2d
|
56 |
+
elif dim == 3:
|
57 |
+
self.conv = F.conv3d
|
58 |
+
else:
|
59 |
+
raise RuntimeError(
|
60 |
+
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, input):
|
64 |
+
"""
|
65 |
+
Apply gaussian filter to input.
|
66 |
+
Arguments:
|
67 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
68 |
+
Returns:
|
69 |
+
filtered (torch.Tensor): Filtered output.
|
70 |
+
"""
|
71 |
+
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)
|
72 |
+
|
73 |
+
|
74 |
+
class AverageSmoothing(nn.Module):
|
75 |
+
"""
|
76 |
+
Apply average smoothing on a
|
77 |
+
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
|
78 |
+
in the input using a depthwise convolution.
|
79 |
+
Arguments:
|
80 |
+
channels (int, sequence): Number of channels of the input tensors. Output will
|
81 |
+
have this number of channels as well.
|
82 |
+
kernel_size (int, sequence): Size of the average kernel.
|
83 |
+
sigma (float, sequence): Standard deviation of the rage kernel.
|
84 |
+
dim (int, optional): The number of dimensions of the data.
|
85 |
+
Default value is 2 (spatial).
|
86 |
+
"""
|
87 |
+
def __init__(self, channels, kernel_size, dim=2):
|
88 |
+
super(AverageSmoothing, self).__init__()
|
89 |
+
|
90 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
91 |
+
kernel = torch.ones(size=(kernel_size, kernel_size)) / (kernel_size * kernel_size)
|
92 |
+
|
93 |
+
# Reshape to depthwise convolutional weight
|
94 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
95 |
+
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
|
96 |
+
|
97 |
+
self.register_buffer('weight', kernel)
|
98 |
+
self.groups = channels
|
99 |
+
|
100 |
+
if dim == 1:
|
101 |
+
self.conv = F.conv1d
|
102 |
+
elif dim == 2:
|
103 |
+
self.conv = F.conv2d
|
104 |
+
elif dim == 3:
|
105 |
+
self.conv = F.conv3d
|
106 |
+
else:
|
107 |
+
raise RuntimeError(
|
108 |
+
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, input):
|
112 |
+
"""
|
113 |
+
Apply average filter to input.
|
114 |
+
Arguments:
|
115 |
+
input (torch.Tensor): Input to apply average filter on.
|
116 |
+
Returns:
|
117 |
+
filtered (torch.Tensor): Filtered output.
|
118 |
+
"""
|
119 |
+
return self.conv(input, weight=self.weight, groups=self.groups)
|
gligen/ldm/models/diffusion/ldm.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from ldm.util import default
|
6 |
+
from ldm.modules.diffusionmodules.util import extract_into_tensor
|
7 |
+
from .ddpm import DDPM
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class LatentDiffusion(DDPM):
|
12 |
+
def __init__(self, *args, **kwargs):
|
13 |
+
super().__init__(*args, **kwargs)
|
14 |
+
# hardcoded
|
15 |
+
self.clip_denoised = False
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def q_sample(self, x_start, t, noise=None):
|
20 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
21 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
22 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
23 |
+
|
24 |
+
|
25 |
+
"Does not support DDPM sampling anymore. Only do DDIM or PLMS"
|
26 |
+
|
27 |
+
# = = = = = = = = = = = = Below is for sampling = = = = = = = = = = = = #
|
28 |
+
|
29 |
+
# def predict_start_from_noise(self, x_t, t, noise):
|
30 |
+
# return ( extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
31 |
+
# extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise )
|
32 |
+
|
33 |
+
# def q_posterior(self, x_start, x_t, t):
|
34 |
+
# posterior_mean = (
|
35 |
+
# extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
36 |
+
# extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
37 |
+
# )
|
38 |
+
# posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
39 |
+
# posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
40 |
+
# return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
41 |
+
|
42 |
+
|
43 |
+
# def p_mean_variance(self, model, x, c, t):
|
44 |
+
|
45 |
+
# model_out = model(x, t, c)
|
46 |
+
# x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
47 |
+
|
48 |
+
# if self.clip_denoised:
|
49 |
+
# x_recon.clamp_(-1., 1.)
|
50 |
+
|
51 |
+
# model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
52 |
+
# return model_mean, posterior_variance, posterior_log_variance, x_recon
|
53 |
+
|
54 |
+
|
55 |
+
# @torch.no_grad()
|
56 |
+
# def p_sample(self, model, x, c, t):
|
57 |
+
# b, *_, device = *x.shape, x.device
|
58 |
+
# model_mean, _, model_log_variance, x0 = self.p_mean_variance(model, x=x, c=c, t=t, )
|
59 |
+
# noise = torch.randn_like(x)
|
60 |
+
|
61 |
+
# # no noise when t == 0
|
62 |
+
# nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
63 |
+
|
64 |
+
# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
65 |
+
|
66 |
+
|
67 |
+
# @torch.no_grad()
|
68 |
+
# def p_sample_loop(self, model, shape, c):
|
69 |
+
# device = self.betas.device
|
70 |
+
# b = shape[0]
|
71 |
+
# img = torch.randn(shape, device=device)
|
72 |
+
|
73 |
+
# iterator = tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps)
|
74 |
+
# for i in iterator:
|
75 |
+
# ts = torch.full((b,), i, device=device, dtype=torch.long)
|
76 |
+
# img, x0 = self.p_sample(model, img, c, ts)
|
77 |
+
|
78 |
+
# return img
|
79 |
+
|
80 |
+
|
81 |
+
# @torch.no_grad()
|
82 |
+
# def sample(self, model, shape, c, uc=None, guidance_scale=None):
|
83 |
+
# return self.p_sample_loop(model, shape, c)
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
gligen/ldm/models/diffusion/loss.py
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from ldm.models.diffusion.gaussian_smoothing import GaussianSmoothing
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torchvision.utils import save_image
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def loss_one_att_outside(attn_map,bboxes, object_positions,t):
|
13 |
+
# loss = torch.tensor(0).to('cuda')
|
14 |
+
loss = 0
|
15 |
+
object_number = len(bboxes)
|
16 |
+
b, i, j = attn_map.shape
|
17 |
+
H = W = int(math.sqrt(i))
|
18 |
+
|
19 |
+
|
20 |
+
# if t== 20: import pdb; pdb.set_trace()
|
21 |
+
|
22 |
+
for obj_idx in range(object_number):
|
23 |
+
|
24 |
+
for obj_box in bboxes[obj_idx]:
|
25 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
26 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
27 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
28 |
+
mask[y_min: y_max, x_min: x_max] = 1.
|
29 |
+
mask_out = 1. - mask
|
30 |
+
index = (mask == 1.).nonzero(as_tuple=False)
|
31 |
+
index_in_key = index[:,0]* H + index[:, 1]
|
32 |
+
att_box = torch.zeros_like(attn_map)
|
33 |
+
att_box[:,index_in_key,:] = attn_map[:,index_in_key,:]
|
34 |
+
|
35 |
+
att_box = att_box.sum(axis=1) / index_in_key.shape[0]
|
36 |
+
att_box = att_box.reshape(-1, H, H)
|
37 |
+
activation_value = (att_box* mask_out).reshape(b, -1).sum(dim=-1) #/ att_box.reshape(b, -1).sum(dim=-1)
|
38 |
+
loss += torch.mean(activation_value)
|
39 |
+
|
40 |
+
return loss / object_number
|
41 |
+
|
42 |
+
def caculate_loss_self_att(self_first, self_second, self_third, bboxes, object_positions, t, list_res=[256], smooth_att = True,sigma=0.5,kernel_size=3 ):
|
43 |
+
all_attn = get_all_self_att(self_first, self_second, self_third)
|
44 |
+
cnt = 0
|
45 |
+
total_loss = 0
|
46 |
+
for res in list_res:
|
47 |
+
attn_maps = all_attn[res]
|
48 |
+
for attn in attn_maps:
|
49 |
+
total_loss += loss_one_att_outside(attn, bboxes, object_positions,t)
|
50 |
+
cnt += 1
|
51 |
+
|
52 |
+
return total_loss /cnt
|
53 |
+
|
54 |
+
|
55 |
+
def get_all_self_att(self_first, self_second, self_third):
|
56 |
+
result = {256:[], 1024:[], 4096:[], 64:[], 94:[],1054:[] ,286:[],4126:[] }
|
57 |
+
# import pdb; pdb.set_trace()
|
58 |
+
all_att = [self_first, self_second, self_third]
|
59 |
+
for self_att in all_att:
|
60 |
+
for att in self_att:
|
61 |
+
if att != []:
|
62 |
+
temp = att[0]
|
63 |
+
for attn_map in temp:
|
64 |
+
current_res = attn_map.shape[1]
|
65 |
+
# print(current_res)
|
66 |
+
result[current_res].append(attn_map)
|
67 |
+
return result
|
68 |
+
|
69 |
+
def get_all_attention(attn_maps_mid, attn_maps_up , attn_maps_down, res):
|
70 |
+
result = []
|
71 |
+
# print('map from up *********************************************')
|
72 |
+
for attn_map_integrated in attn_maps_up:
|
73 |
+
if attn_map_integrated == []: continue
|
74 |
+
attn_map = attn_map_integrated[0][0]
|
75 |
+
# print(attn_map.shape)
|
76 |
+
b, i, j = attn_map.shape
|
77 |
+
H = W = int(math.sqrt(i))
|
78 |
+
# print(H)
|
79 |
+
if H == res:
|
80 |
+
# print(attn_map.shape)
|
81 |
+
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
|
82 |
+
# print('map from mid *********************************************')
|
83 |
+
for attn_map_integrated in attn_maps_mid:
|
84 |
+
|
85 |
+
# for attn_map_integrated in attn_maps_mid:
|
86 |
+
attn_map = attn_map_integrated[0]
|
87 |
+
# print(attn_map.shape)
|
88 |
+
b, i, j = attn_map.shape
|
89 |
+
H = W = int(math.sqrt(i))
|
90 |
+
# print(H)
|
91 |
+
if (H==res):
|
92 |
+
# print(attn_map.shape)
|
93 |
+
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
|
94 |
+
# import pdb; pdb.set_trace()
|
95 |
+
# print('map from down *********************************************')
|
96 |
+
for attn_map_integrated in attn_maps_down:
|
97 |
+
if attn_map_integrated == []: continue
|
98 |
+
attn_map = attn_map_integrated[0][0]
|
99 |
+
# print(attn_map.shape)
|
100 |
+
if attn_map == []: continue
|
101 |
+
b, i, j = attn_map.shape
|
102 |
+
H = W = int(math.sqrt(i))
|
103 |
+
# print(H)
|
104 |
+
if (H==res):
|
105 |
+
# print(attn_map.shape)
|
106 |
+
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
|
107 |
+
# for _map in result:
|
108 |
+
# print(_map.shape)
|
109 |
+
result = torch.cat(result, dim=0)
|
110 |
+
# print(result.shape)
|
111 |
+
result = result.sum(0) / result.shape[0]
|
112 |
+
# print(result.shape)
|
113 |
+
return result
|
114 |
+
|
115 |
+
def get_all_attention_64(attn_maps_mid, attn_maps_up , attn_maps_down, res):
|
116 |
+
result = []
|
117 |
+
# print('map from up *********************************************')
|
118 |
+
for attn_map_integrated in attn_maps_up:
|
119 |
+
if attn_map_integrated == []: continue
|
120 |
+
attn_map = attn_map_integrated[0][0]
|
121 |
+
# print(attn_map.shape)
|
122 |
+
b, i, j = attn_map.shape
|
123 |
+
H = W = int(math.sqrt(i))
|
124 |
+
# print(H)
|
125 |
+
if H == res:
|
126 |
+
# print(attn_map.shape)
|
127 |
+
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
|
128 |
+
item = item.permute(0, 3, 1, 2)
|
129 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
130 |
+
result.append(item)
|
131 |
+
# result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
|
132 |
+
# print('map from mid *********************************************')
|
133 |
+
for attn_map_integrated in attn_maps_mid:
|
134 |
+
|
135 |
+
# for attn_map_integrated in attn_maps_mid:
|
136 |
+
attn_map = attn_map_integrated[0]
|
137 |
+
# print(attn_map.shape)
|
138 |
+
b, i, j = attn_map.shape
|
139 |
+
H = W = int(math.sqrt(i))
|
140 |
+
# print(H)
|
141 |
+
if (H==8):
|
142 |
+
item = attn_map.reshape(-1, 8, 8, attn_map.shape[-1] )
|
143 |
+
item = item.permute(0, 3, 1, 2)
|
144 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
145 |
+
result.append(item)
|
146 |
+
# result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
|
147 |
+
# import pdb; pdb.set_trace()
|
148 |
+
# print('map from down *********************************************')
|
149 |
+
for attn_map_integrated in attn_maps_down:
|
150 |
+
if attn_map_integrated == []: continue
|
151 |
+
attn_map = attn_map_integrated[0][0]
|
152 |
+
# print(attn_map.shape)
|
153 |
+
if attn_map == []: continue
|
154 |
+
b, i, j = attn_map.shape
|
155 |
+
H = W = int(math.sqrt(i))
|
156 |
+
# print(H)
|
157 |
+
if (H==res):
|
158 |
+
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
|
159 |
+
item = item.permute(0, 3, 1, 2)
|
160 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
161 |
+
result.append(item)
|
162 |
+
# for _map in result:
|
163 |
+
# print(_map.shape)
|
164 |
+
result = torch.cat(result, dim=0)
|
165 |
+
# print(result.shape)
|
166 |
+
result = result.sum(0) / result.shape[0]
|
167 |
+
# print(result.shape)
|
168 |
+
return result
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
def caculate_loss_att_fixed_cnt(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
|
173 |
+
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
|
174 |
+
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32)
|
175 |
+
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64)
|
176 |
+
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8)
|
177 |
+
all_attn = [attn16]
|
178 |
+
obj_number = len(bboxes)
|
179 |
+
total_loss = 0
|
180 |
+
# import pdb; pdb.set_trace()
|
181 |
+
for attn in all_attn[0:1]:
|
182 |
+
# print(attn.shape)
|
183 |
+
attn_text = attn[:, :, 1:-1]
|
184 |
+
attn_text *= 100
|
185 |
+
attn_text = torch.nn.functional.softmax(attn_text, dim=-1)
|
186 |
+
current_res = attn.shape[0]
|
187 |
+
H = W = current_res
|
188 |
+
|
189 |
+
# if t == 49: import pdb; pdb.set_trace()
|
190 |
+
# 对于每一个物体
|
191 |
+
for obj_idx in range(obj_number):
|
192 |
+
num_boxes= 0
|
193 |
+
# 对于该物体 对应的 每一个box 一般就一个
|
194 |
+
for obj_position in object_positions[obj_idx]:
|
195 |
+
true_obj_position = obj_position - 1
|
196 |
+
# 取出该物体该box对应的attention map
|
197 |
+
att_map_obj = attn_text[:,:, true_obj_position]
|
198 |
+
print(att_map_obj.shape)
|
199 |
+
if smooth_att:
|
200 |
+
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
|
201 |
+
input = F.pad(att_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
202 |
+
att_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
203 |
+
print('after', att_map_obj.shape)
|
204 |
+
other_att_map_obj = att_map_obj.clone()
|
205 |
+
att_copy = att_map_obj.clone()
|
206 |
+
|
207 |
+
for obj_box in bboxes[obj_idx]:
|
208 |
+
# print('obj_box', type(obj_box))
|
209 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
210 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
211 |
+
|
212 |
+
# 取得这张map上 当前box的最大值
|
213 |
+
if att_map_obj[y_min: y_max, x_min: x_max].numel() == 0:
|
214 |
+
max_inside=1.
|
215 |
+
|
216 |
+
else:
|
217 |
+
max_inside = att_map_obj[y_min: y_max, x_min: x_max].max()
|
218 |
+
total_loss += 1. - max_inside
|
219 |
+
|
220 |
+
# find max outside the box, find in the other boxes
|
221 |
+
|
222 |
+
att_copy[y_min: y_max, x_min: x_max] = 0.
|
223 |
+
other_att_map_obj[y_min: y_max, x_min: x_max] = 0.
|
224 |
+
|
225 |
+
for obj_outside in range(obj_number):
|
226 |
+
if obj_outside != obj_idx:
|
227 |
+
for obj_out_box in bboxes[obj_outside]:
|
228 |
+
x_min_out, y_min_out, x_max_out, y_max_out = int(obj_out_box[0] * W), \
|
229 |
+
int(obj_out_box[1] * H), int(obj_out_box[2] * W), int(obj_out_box[3] * H)
|
230 |
+
|
231 |
+
# 取得这张map上 其他box中的最大值
|
232 |
+
if other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].numel() == 0:
|
233 |
+
max_outside_one= 0
|
234 |
+
else:
|
235 |
+
max_outside_one = other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].max()
|
236 |
+
# max_outside = max(max_outside,max_outside_one )
|
237 |
+
# 把所有box都置0
|
238 |
+
att_copy[y_min_out: y_max_out, x_min_out: x_max_out] = 0.
|
239 |
+
total_loss += max_outside_one
|
240 |
+
max_background = att_copy.max()
|
241 |
+
total_loss += len(bboxes[obj_idx]) *max_background /2.
|
242 |
+
|
243 |
+
return total_loss/obj_number
|
244 |
+
|
245 |
+
def caculate_loss_LoCo(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
|
246 |
+
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
|
247 |
+
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32)
|
248 |
+
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64)
|
249 |
+
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8)
|
250 |
+
all_attn = [attn16]
|
251 |
+
|
252 |
+
|
253 |
+
loss = 0.
|
254 |
+
pad_loss = 0.
|
255 |
+
total_fg_map = torch.zeros(size=(16, 16)).cuda()
|
256 |
+
|
257 |
+
# alpha是pad loss的权重
|
258 |
+
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
|
259 |
+
alpha = 0.2
|
260 |
+
beta = 0.8
|
261 |
+
|
262 |
+
object_number = len(bboxes)
|
263 |
+
if object_number == 0:
|
264 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
265 |
+
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
|
266 |
+
# all_attn = [attn16]
|
267 |
+
max_loss = 0
|
268 |
+
|
269 |
+
|
270 |
+
for attn_map in all_attn:
|
271 |
+
# print(attn_map.shape)
|
272 |
+
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
|
273 |
+
sum_in = 0.
|
274 |
+
sum_out = 0.
|
275 |
+
|
276 |
+
i, j, k = attn_map.shape
|
277 |
+
H = W = i # 在这里是8
|
278 |
+
for obj_idx in range(object_number): # 对于每个box
|
279 |
+
obj_loss = 0
|
280 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
281 |
+
for obj_box in bboxes[obj_idx]:
|
282 |
+
|
283 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
284 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
285 |
+
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
|
286 |
+
total_fg_map[y_min: y_max, x_min: x_max] = 1
|
287 |
+
|
288 |
+
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
|
289 |
+
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
|
290 |
+
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
|
291 |
+
|
292 |
+
# print(attn_map[:, :, obj_position].shape)
|
293 |
+
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
|
294 |
+
|
295 |
+
# print(ca_map_obj.shape)
|
296 |
+
if smooth_att:
|
297 |
+
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
|
298 |
+
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
299 |
+
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
300 |
+
|
301 |
+
ca_map_obj = ca_map_obj.reshape(H, W)
|
302 |
+
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
|
303 |
+
# if smooth_attn:
|
304 |
+
# smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
|
305 |
+
# input = F.pad(norm_ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
306 |
+
# ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
307 |
+
|
308 |
+
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
|
309 |
+
|
310 |
+
# avg_fg_value = torch.mean(ca_map_obj * mask)
|
311 |
+
# print('avg_fg_value', avg_fg_value)
|
312 |
+
|
313 |
+
sum_in += (norm_ca_map_obj * mask).sum()
|
314 |
+
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
|
315 |
+
|
316 |
+
# obj_loss += torch.mean((1 - activation_value) ** 2)
|
317 |
+
|
318 |
+
# # SOTR loss
|
319 |
+
# ca_map_obj = (1 - attn_map[:, :, 0]).reshape(H, W)
|
320 |
+
# if (1 - attn_map[:, :, obj_position].max()) > max_loss:
|
321 |
+
# max_loss = (1 - attn_map[:, :, obj_position].max())
|
322 |
+
|
323 |
+
# ca_map_obj = (1 - attn_map[:, :, 0]).reshape(H, W)
|
324 |
+
# if smooth_attn:
|
325 |
+
# smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
|
326 |
+
# input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
327 |
+
# ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
328 |
+
# # ca_map_obj *= 100
|
329 |
+
# # ca_map_obj = torch.nn.functional.softmax(ca_map_obj, dim=-1)
|
330 |
+
# activation_value = (ca_map_obj * mask).reshape(-1).sum(dim=-1) / ca_map_obj.reshape(-1).sum(dim=-1)
|
331 |
+
# obj_loss += torch.mean((1 - activation_value) ** 2)
|
332 |
+
# obj_loss 就是标量了 tensor(0.3547, device='cuda:0', grad_fn=<AddBackward0>)
|
333 |
+
|
334 |
+
# 在这里每个物体对应1个box,所以len是1
|
335 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
336 |
+
|
337 |
+
# get pad_loss
|
338 |
+
sot_map = attn_map[:, :, 0].reshape(H, W)
|
339 |
+
eot_map = attn_map[:, :, -1].reshape(H, W)
|
340 |
+
|
341 |
+
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
|
342 |
+
norm_eot_map = eot_map / eot_map.max()
|
343 |
+
|
344 |
+
|
345 |
+
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
|
346 |
+
|
347 |
+
# pad_map = pad_map.to(torch.float64)
|
348 |
+
|
349 |
+
total_fg_mask = total_fg_map#.to(torch.float64)
|
350 |
+
fg_map = pad_map * total_fg_mask
|
351 |
+
|
352 |
+
# print(fg_map.shape)
|
353 |
+
# print(pad_map.shape)
|
354 |
+
# fg_map = torch.sigmoid(fg_map)
|
355 |
+
|
356 |
+
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
|
357 |
+
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
|
358 |
+
# print('mse_loss', mse_loss)
|
359 |
+
# print('bce_loss', bce_loss)
|
360 |
+
#bce_loss = torch.clamp(bce_loss, max=0.99)
|
361 |
+
# pad_loss += mse_loss
|
362 |
+
pad_loss += bce_loss
|
363 |
+
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
|
364 |
+
|
365 |
+
# print('该步优化结束')
|
366 |
+
|
367 |
+
|
368 |
+
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
369 |
+
# loss += max_loss
|
370 |
+
# print('loss', loss)
|
371 |
+
# print('pad_loss', alpha * pad_loss)
|
372 |
+
|
373 |
+
|
374 |
+
return loss + alpha * pad_loss
|
375 |
+
|
376 |
+
def caculate_loss_LoCo_64(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
|
377 |
+
attn16 = get_all_attention_64(attn_maps_mid, attn_maps_up, attn_maps_down, res)
|
378 |
+
all_attn = [attn16]
|
379 |
+
|
380 |
+
|
381 |
+
loss = 0.
|
382 |
+
pad_loss = 0.
|
383 |
+
total_fg_map = torch.zeros(size=(64, 64)).cuda()
|
384 |
+
|
385 |
+
# alpha是pad loss的权重
|
386 |
+
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
|
387 |
+
alpha = 0.2
|
388 |
+
beta = 0.8
|
389 |
+
|
390 |
+
object_number = len(bboxes)
|
391 |
+
if object_number == 0:
|
392 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
393 |
+
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
|
394 |
+
# all_attn = [attn16]
|
395 |
+
max_loss = 0
|
396 |
+
|
397 |
+
|
398 |
+
for attn_map in all_attn:
|
399 |
+
# print(attn_map.shape)
|
400 |
+
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
|
401 |
+
sum_in = 0.
|
402 |
+
sum_out = 0.
|
403 |
+
|
404 |
+
i, j, k = attn_map.shape
|
405 |
+
H = W = i # 在这里是8
|
406 |
+
for obj_idx in range(object_number): # 对于每个box
|
407 |
+
obj_loss = 0
|
408 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
409 |
+
for obj_box in bboxes[obj_idx]:
|
410 |
+
|
411 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
412 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
413 |
+
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
|
414 |
+
total_fg_map[y_min: y_max, x_min: x_max] = 1
|
415 |
+
|
416 |
+
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
|
417 |
+
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
|
418 |
+
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
|
419 |
+
|
420 |
+
# print(attn_map[:, :, obj_position].shape)
|
421 |
+
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
|
422 |
+
|
423 |
+
# print(ca_map_obj.shape)
|
424 |
+
if smooth_att:
|
425 |
+
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
|
426 |
+
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
427 |
+
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
428 |
+
|
429 |
+
ca_map_obj = ca_map_obj.reshape(H, W)
|
430 |
+
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
|
431 |
+
|
432 |
+
|
433 |
+
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
|
434 |
+
|
435 |
+
sum_in += (norm_ca_map_obj * mask).sum()
|
436 |
+
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
|
437 |
+
|
438 |
+
|
439 |
+
|
440 |
+
# 在这里每个物体对应1个box,所以len是1
|
441 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
442 |
+
|
443 |
+
# get pad_loss
|
444 |
+
sot_map = attn_map[:, :, 0].reshape(H, W)
|
445 |
+
eot_map = attn_map[:, :, -1].reshape(H, W)
|
446 |
+
|
447 |
+
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
|
448 |
+
norm_eot_map = eot_map / eot_map.max()
|
449 |
+
|
450 |
+
|
451 |
+
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
|
452 |
+
|
453 |
+
# pad_map = pad_map.to(torch.float64)
|
454 |
+
|
455 |
+
total_fg_mask = total_fg_map#.to(torch.float64)
|
456 |
+
fg_map = pad_map * total_fg_mask
|
457 |
+
|
458 |
+
# print(fg_map.shape)
|
459 |
+
# print(pad_map.shape)
|
460 |
+
# fg_map = torch.sigmoid(fg_map)
|
461 |
+
|
462 |
+
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
|
463 |
+
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
|
464 |
+
# print('mse_loss', mse_loss)
|
465 |
+
# print('bce_loss', bce_loss)
|
466 |
+
#bce_loss = torch.clamp(bce_loss, max=0.99)
|
467 |
+
# pad_loss += mse_loss
|
468 |
+
pad_loss += bce_loss
|
469 |
+
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
|
470 |
+
|
471 |
+
# print('该步优化结束')
|
472 |
+
|
473 |
+
|
474 |
+
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
475 |
+
# loss += max_loss
|
476 |
+
# print('loss', loss)
|
477 |
+
# print('pad_loss', alpha * pad_loss)
|
478 |
+
|
479 |
+
|
480 |
+
return loss + alpha * pad_loss
|
481 |
+
|
482 |
+
def caculate_loss_LoCo_V2(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
|
483 |
+
attn16 = get_all_attention_64(attn_maps_mid, attn_maps_up, attn_maps_down, res)
|
484 |
+
all_attn = [attn16]
|
485 |
+
|
486 |
+
loss = 0.
|
487 |
+
pad_loss = 0.
|
488 |
+
total_fg_map = torch.zeros(size=(64, 64)).cuda()
|
489 |
+
|
490 |
+
alpha = 0.2
|
491 |
+
beta = 0.8
|
492 |
+
|
493 |
+
object_number = len(bboxes)
|
494 |
+
if object_number == 0:
|
495 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
496 |
+
# attn16 = attn_maps # get_all_attention_64(attn_maps_down[-1]+ attn_maps_down[-2], attn_maps_mid, attn_maps_up[0]+attn_maps_up[1], 16)
|
497 |
+
# all_attn = [attn16]
|
498 |
+
max_loss = 0
|
499 |
+
|
500 |
+
|
501 |
+
for attn_map in all_attn:
|
502 |
+
|
503 |
+
sum_in = 0.
|
504 |
+
sum_out = 0.
|
505 |
+
|
506 |
+
i, j, k = attn_map.shape
|
507 |
+
H = W = i
|
508 |
+
for obj_idx in range(object_number):
|
509 |
+
obj_loss = 0
|
510 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
511 |
+
for obj_box in bboxes[obj_idx]:
|
512 |
+
|
513 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
514 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
515 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
516 |
+
total_fg_map[y_min: y_max, x_min: x_max] = 1
|
517 |
+
|
518 |
+
for obj_position in [object_positions[obj_idx]]:
|
519 |
+
# print('obj_position', obj_position)
|
520 |
+
if len(object_positions[obj_idx]) > 1 :
|
521 |
+
ca_map_obj = attn_map[:, :, obj_position].mean(-1)
|
522 |
+
else:
|
523 |
+
ca_map_obj = attn_map[:, :, obj_position]
|
524 |
+
ca_map_obj = ca_map_obj.reshape(H, W)
|
525 |
+
# norm_attn = (ca_map_obj - ca_map_obj.min()) / (ca_map_obj.max() - ca_map_obj.min())
|
526 |
+
norm_attn = ca_map_obj / ca_map_obj.max()
|
527 |
+
norm_attn = norm_attn.reshape(H, W)
|
528 |
+
|
529 |
+
# rev_mask = (1 - mask)
|
530 |
+
# thres = (norm_attn * mask).sum() / mask.sum() / 5 * 2 + ((norm_attn * rev_mask).sum() / rev_mask.sum() / 5 * 3) if rev_mask.sum() != 0 else 0
|
531 |
+
|
532 |
+
# thres_image = torch.nn.functional.threshold(norm_attn, thres.item(), 0.0)
|
533 |
+
# thres_image = thres_image / thres_image.max()
|
534 |
+
|
535 |
+
# rows, cols = torch.where(thres_image > 0.3)
|
536 |
+
# if rows.numel() == 0:
|
537 |
+
# x1 = y1 = x2 = y2 = 0
|
538 |
+
# else:
|
539 |
+
# x1, y1 = cols.min(), rows.min()
|
540 |
+
# x2, y2 = cols.max(), rows.max()
|
541 |
+
# # x1, y1 = cols.min(), rows.min()
|
542 |
+
# # x2, y2 = cols.max(), rows.max()
|
543 |
+
|
544 |
+
# mask_MBR = mask.clone()
|
545 |
+
# mask_MBR[y1:y2, x1:x2] = 1
|
546 |
+
|
547 |
+
# iou = (mask_MBR * mask).sum() / torch.max(mask_MBR, mask).sum()
|
548 |
+
iou = 0
|
549 |
+
|
550 |
+
if iou < 0.85:
|
551 |
+
sum_in = (1 - iou) * (norm_attn * mask).sum()
|
552 |
+
sum_out = (1 - iou) * (norm_attn * (1 - mask)).sum()
|
553 |
+
obj_loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
554 |
+
|
555 |
+
loss += (obj_loss) # /len(object_positions[obj_idx])
|
556 |
+
|
557 |
+
sot_map = attn_map[:, :, 0].reshape(H, W)
|
558 |
+
eot_map = attn_map[:, :, -1].reshape(H, W)
|
559 |
+
|
560 |
+
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
|
561 |
+
norm_eot_map = eot_map / eot_map.max()
|
562 |
+
|
563 |
+
|
564 |
+
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
|
565 |
+
|
566 |
+
total_fg_mask = total_fg_map
|
567 |
+
fg_map = pad_map * total_fg_mask
|
568 |
+
|
569 |
+
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.to(torch.float16).reshape(-1)), fg_map.to(torch.float16).reshape(-1))
|
570 |
+
|
571 |
+
pad_loss += bce_loss
|
572 |
+
if sum_in + sum_out == 0:
|
573 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
574 |
+
# loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
575 |
+
# print('loss', loss)
|
576 |
+
# return loss
|
577 |
+
return loss + alpha * pad_loss
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
def caculate_loss_LAC(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
|
582 |
+
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
|
583 |
+
all_attn = [attn16]
|
584 |
+
|
585 |
+
|
586 |
+
loss = 0.
|
587 |
+
pad_loss = 0.
|
588 |
+
total_fg_map = torch.zeros(size=(16, 16)).cuda()
|
589 |
+
|
590 |
+
# alpha是pad loss的权重
|
591 |
+
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
|
592 |
+
alpha = 0.2
|
593 |
+
beta = 0.8
|
594 |
+
|
595 |
+
object_number = len(bboxes)
|
596 |
+
if object_number == 0:
|
597 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
598 |
+
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
|
599 |
+
# all_attn = [attn16]
|
600 |
+
max_loss = 0
|
601 |
+
|
602 |
+
|
603 |
+
for attn_map in all_attn:
|
604 |
+
# print(attn_map.shape)
|
605 |
+
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
|
606 |
+
sum_in = 0.
|
607 |
+
sum_out = 0.
|
608 |
+
|
609 |
+
i, j, k = attn_map.shape
|
610 |
+
H = W = i # 在这里是8
|
611 |
+
for obj_idx in range(object_number): # 对于每个box
|
612 |
+
obj_loss = 0
|
613 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
614 |
+
for obj_box in bboxes[obj_idx]:
|
615 |
+
|
616 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
617 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
618 |
+
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
|
619 |
+
total_fg_map[y_min: y_max, x_min: x_max] = 1
|
620 |
+
|
621 |
+
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
|
622 |
+
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
|
623 |
+
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
|
624 |
+
|
625 |
+
# print(attn_map[:, :, obj_position].shape)
|
626 |
+
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
|
627 |
+
|
628 |
+
print(ca_map_obj.shape)
|
629 |
+
if smooth_att:
|
630 |
+
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
|
631 |
+
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
|
632 |
+
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
|
633 |
+
|
634 |
+
ca_map_obj = ca_map_obj.reshape(H, W)
|
635 |
+
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
|
636 |
+
|
637 |
+
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
|
638 |
+
|
639 |
+
# avg_fg_value = torch.mean(ca_map_obj * mask)
|
640 |
+
# print('avg_fg_value', avg_fg_value)
|
641 |
+
|
642 |
+
sum_in += (norm_ca_map_obj * mask).sum()
|
643 |
+
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
|
644 |
+
|
645 |
+
# 在这里每个物体对应1个box,所以len是1
|
646 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
647 |
+
|
648 |
+
# get pad_loss
|
649 |
+
#sot_map = attn_map[:, :, 0].reshape(H, W)
|
650 |
+
#eot_map = attn_map[:, :, -1].reshape(H, W)
|
651 |
+
|
652 |
+
#norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
|
653 |
+
#norm_eot_map = eot_map / eot_map.max()
|
654 |
+
|
655 |
+
|
656 |
+
#pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
|
657 |
+
|
658 |
+
# pad_map = pad_map.to(torch.float64)
|
659 |
+
|
660 |
+
#total_fg_mask = total_fg_map#.to(torch.float64)
|
661 |
+
#fg_map = pad_map * total_fg_mask
|
662 |
+
|
663 |
+
# print(fg_map.shape)
|
664 |
+
# print(pad_map.shape)
|
665 |
+
# fg_map = torch.sigmoid(fg_map)
|
666 |
+
|
667 |
+
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
|
668 |
+
#bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
|
669 |
+
# print('mse_loss', mse_loss)
|
670 |
+
# print('bce_loss', bce_loss)
|
671 |
+
#bce_loss = torch.clamp(bce_loss, max=0.99)
|
672 |
+
# pad_loss += mse_loss
|
673 |
+
#pad_loss += bce_loss
|
674 |
+
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
|
675 |
+
|
676 |
+
# print('该步优化结束')
|
677 |
+
|
678 |
+
|
679 |
+
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
680 |
+
# loss += max_loss
|
681 |
+
# print('loss', loss)
|
682 |
+
# print('pad_loss', alpha * pad_loss)
|
683 |
+
|
684 |
+
|
685 |
+
return loss + alpha * pad_loss
|
gligen/ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
from functools import partial
|
5 |
+
from copy import deepcopy
|
6 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler
|
7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
8 |
+
import math
|
9 |
+
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo,caculate_loss_LAC, caculate_loss_LoCo_V2
|
10 |
+
class PLMSSampler(object):
|
11 |
+
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
|
12 |
+
super().__init__()
|
13 |
+
self.diffusion = diffusion
|
14 |
+
self.model = model
|
15 |
+
self.device = diffusion.betas.device
|
16 |
+
self.ddpm_num_timesteps = diffusion.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
self.alpha_generator_func = alpha_generator_func
|
19 |
+
self.set_alpha_scale = set_alpha_scale
|
20 |
+
|
21 |
+
def register_buffer(self, name, attr):
|
22 |
+
if type(attr) == torch.Tensor:
|
23 |
+
attr = attr.to(self.device)
|
24 |
+
setattr(self, name, attr)
|
25 |
+
|
26 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
|
27 |
+
if ddim_eta != 0:
|
28 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
29 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
30 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
31 |
+
alphas_cumprod = self.diffusion.alphas_cumprod
|
32 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
33 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
34 |
+
|
35 |
+
self.register_buffer('betas', to_torch(self.diffusion.betas))
|
36 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
37 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
|
38 |
+
|
39 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
40 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
44 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
45 |
+
|
46 |
+
# ddim sampling parameters
|
47 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
48 |
+
ddim_timesteps=self.ddim_timesteps,
|
49 |
+
eta=ddim_eta,verbose=verbose)
|
50 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
51 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
52 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
53 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
54 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
55 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
56 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
57 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
58 |
+
|
59 |
+
|
60 |
+
# @torch.no_grad()
|
61 |
+
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type=None):
|
62 |
+
self.make_schedule(ddim_num_steps=S)
|
63 |
+
# import pdb; pdb.set_trace()
|
64 |
+
return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0, loss_type=loss_type)
|
65 |
+
|
66 |
+
|
67 |
+
# @torch.no_grad()
|
68 |
+
def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type=None):
|
69 |
+
|
70 |
+
b = shape[0]
|
71 |
+
|
72 |
+
img = input["x"]
|
73 |
+
if img == None:
|
74 |
+
img = torch.randn(shape, device=self.device)
|
75 |
+
input["x"] = img
|
76 |
+
|
77 |
+
time_range = np.flip(self.ddim_timesteps)
|
78 |
+
total_steps = self.ddim_timesteps.shape[0]
|
79 |
+
|
80 |
+
old_eps = []
|
81 |
+
|
82 |
+
if self.alpha_generator_func != None:
|
83 |
+
alphas = self.alpha_generator_func(len(time_range))
|
84 |
+
|
85 |
+
# 新加的scheduler
|
86 |
+
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012,
|
87 |
+
beta_schedule="scaled_linear", num_train_timesteps=1000)
|
88 |
+
noise_scheduler.set_timesteps(50)
|
89 |
+
|
90 |
+
for i, step in enumerate(time_range):
|
91 |
+
|
92 |
+
# set alpha and restore first conv layer
|
93 |
+
if self.alpha_generator_func != None:
|
94 |
+
self.set_alpha_scale(self.model, alphas[i])
|
95 |
+
if alphas[i] == 0:
|
96 |
+
self.model.restore_first_conv_from_SD()
|
97 |
+
|
98 |
+
# run
|
99 |
+
index = total_steps - i - 1
|
100 |
+
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
|
101 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)
|
102 |
+
|
103 |
+
if mask is not None:
|
104 |
+
assert x0 is not None
|
105 |
+
img_orig = self.diffusion.q_sample(x0, ts)
|
106 |
+
img = img_orig * mask + (1. - mask) * img
|
107 |
+
input["x"] = img
|
108 |
+
# three loss types
|
109 |
+
if loss_type !=None and loss_type!='standard':
|
110 |
+
if input['object_position'] != []:
|
111 |
+
if loss_type=='SAR_CAR':
|
112 |
+
x = self.update_loss_self_cross( input,i, index, ts )
|
113 |
+
elif loss_type=='SAR':
|
114 |
+
x = self.update_only_self( input,i, index, ts )
|
115 |
+
elif loss_type=='CAR':
|
116 |
+
x = self.update_loss_only_cross( input,i, index, ts )
|
117 |
+
elif loss_type=='LoCo':
|
118 |
+
|
119 |
+
#print('Utilizing LoCo!!')
|
120 |
+
time_factor = noise_scheduler.sigmas[i] ** 2
|
121 |
+
x = self.update_loss_LoCo( input,i, index, ts, time_factor = time_factor)
|
122 |
+
|
123 |
+
elif loss_type=='LAC':
|
124 |
+
#print('Utilizing LoCo!!')
|
125 |
+
x = self.update_loss_LAC( input,i, index, ts )
|
126 |
+
input["x"] = x
|
127 |
+
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
|
128 |
+
input["x"] = img
|
129 |
+
old_eps.append(e_t)
|
130 |
+
if len(old_eps) >= 4:
|
131 |
+
old_eps.pop(0)
|
132 |
+
|
133 |
+
return img
|
134 |
+
|
135 |
+
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
|
136 |
+
if index1 < 10:
|
137 |
+
loss_scale = 3
|
138 |
+
max_iter = 5
|
139 |
+
elif index1 < 20:
|
140 |
+
loss_scale = 2
|
141 |
+
max_iter = 3
|
142 |
+
else:
|
143 |
+
loss_scale = 1
|
144 |
+
max_iter = 1
|
145 |
+
|
146 |
+
loss_threshold = 0.1
|
147 |
+
max_index = 30
|
148 |
+
x = deepcopy(input["x"])
|
149 |
+
iteration = 0
|
150 |
+
loss = torch.tensor(10000)
|
151 |
+
input["timesteps"] = ts
|
152 |
+
|
153 |
+
print("optimize", index1)
|
154 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
155 |
+
print('iter', iteration)
|
156 |
+
x = x.requires_grad_(True)
|
157 |
+
input['x'] = x
|
158 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
159 |
+
bboxes = input['boxes']
|
160 |
+
object_positions = input['object_position']
|
161 |
+
loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
|
162 |
+
object_positions=object_positions, t = index1)*loss_scale
|
163 |
+
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
|
164 |
+
object_positions=object_positions, t = index1)*loss_scale
|
165 |
+
loss = loss1 + loss2
|
166 |
+
print('AR loss:', loss, 'SAR:', loss1, 'CAR:', loss2)
|
167 |
+
hh = torch.autograd.backward(loss)
|
168 |
+
grad_cond = x.grad
|
169 |
+
x = x - grad_cond
|
170 |
+
x = x.detach()
|
171 |
+
iteration += 1
|
172 |
+
torch.cuda.empty_cache()
|
173 |
+
return x
|
174 |
+
|
175 |
+
def update_loss_only_cross(self, input,index1, index, ts,type_loss='self_accross'):
|
176 |
+
|
177 |
+
if index1 < 10:
|
178 |
+
loss_scale = 3
|
179 |
+
max_iter = 5
|
180 |
+
elif index1 < 20:
|
181 |
+
loss_scale = 2
|
182 |
+
max_iter = 5
|
183 |
+
else:
|
184 |
+
loss_scale = 1
|
185 |
+
max_iter = 1
|
186 |
+
loss_threshold = 0.1
|
187 |
+
|
188 |
+
max_index = 30
|
189 |
+
x = deepcopy(input["x"])
|
190 |
+
iteration = 0
|
191 |
+
loss = torch.tensor(10000)
|
192 |
+
input["timesteps"] = ts
|
193 |
+
|
194 |
+
print("optimize", index1)
|
195 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
196 |
+
print('iter', iteration)
|
197 |
+
x = x.requires_grad_(True)
|
198 |
+
print('x shape', x.shape)
|
199 |
+
input['x'] = x
|
200 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
201 |
+
|
202 |
+
bboxes = input['boxes']
|
203 |
+
object_positions = input['object_position']
|
204 |
+
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
|
205 |
+
object_positions=object_positions, t = index1)*loss_scale
|
206 |
+
loss = loss2
|
207 |
+
print('loss', loss)
|
208 |
+
hh = torch.autograd.backward(loss, retain_graph=True)
|
209 |
+
grad_cond = x.grad
|
210 |
+
x = x - grad_cond
|
211 |
+
x = x.detach()
|
212 |
+
iteration += 1
|
213 |
+
torch.cuda.empty_cache()
|
214 |
+
return x
|
215 |
+
|
216 |
+
def update_loss_LoCo(self, input,index1, index, ts, time_factor, type_loss='self_accross'):
|
217 |
+
|
218 |
+
# loss_scale = 30
|
219 |
+
# max_iter = 5
|
220 |
+
#print('time_factor is: ', time_factor)
|
221 |
+
if index1 < 10:
|
222 |
+
loss_scale = 8
|
223 |
+
max_iter = 5
|
224 |
+
elif index1 < 20:
|
225 |
+
loss_scale = 5
|
226 |
+
max_iter = 5
|
227 |
+
else:
|
228 |
+
loss_scale = 1
|
229 |
+
max_iter = 1
|
230 |
+
loss_threshold = 0.1
|
231 |
+
|
232 |
+
max_index = 30
|
233 |
+
x = deepcopy(input["x"])
|
234 |
+
iteration = 0
|
235 |
+
loss = torch.tensor(10000)
|
236 |
+
input["timesteps"] = ts
|
237 |
+
|
238 |
+
# print("optimize", index1)
|
239 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
240 |
+
# print('iter', iteration)
|
241 |
+
x = x.requires_grad_(True)
|
242 |
+
# print('x shape', x.shape)
|
243 |
+
input['x'] = x
|
244 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
245 |
+
|
246 |
+
bboxes = input['boxes']
|
247 |
+
object_positions = input['object_position']
|
248 |
+
loss2 = caculate_loss_LoCo_V2(att_second,att_first,att_third, bboxes=bboxes,
|
249 |
+
object_positions=object_positions, t = index1)*loss_scale
|
250 |
+
# loss = loss2
|
251 |
+
# loss.requires_grad_(True)
|
252 |
+
#print('LoCo loss', loss)
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
hh = torch.autograd.backward(loss2, retain_graph=True)
|
257 |
+
grad_cond = x.grad
|
258 |
+
x = x - grad_cond
|
259 |
+
x = x.detach()
|
260 |
+
iteration += 1
|
261 |
+
torch.cuda.empty_cache()
|
262 |
+
return x
|
263 |
+
|
264 |
+
def update_loss_LAC(self, input,index1, index, ts,type_loss='self_accross'):
|
265 |
+
|
266 |
+
# loss_scale = 30
|
267 |
+
# max_iter = 5
|
268 |
+
|
269 |
+
if index1 < 10:
|
270 |
+
loss_scale = 6
|
271 |
+
max_iter = 5
|
272 |
+
elif index1 < 20:
|
273 |
+
loss_scale = 4
|
274 |
+
max_iter = 3
|
275 |
+
else:
|
276 |
+
loss_scale = 1
|
277 |
+
max_iter = 1
|
278 |
+
loss_threshold = 0.002
|
279 |
+
|
280 |
+
max_index = 30
|
281 |
+
x = deepcopy(input["x"])
|
282 |
+
iteration = 0
|
283 |
+
loss = torch.tensor(10000)
|
284 |
+
input["timesteps"] = ts
|
285 |
+
|
286 |
+
print("optimize", index1)
|
287 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
288 |
+
print('iter', iteration)
|
289 |
+
x = x.requires_grad_(True)
|
290 |
+
# print('x shape', x.shape)
|
291 |
+
input['x'] = x
|
292 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
293 |
+
|
294 |
+
bboxes = input['boxes']
|
295 |
+
object_positions = input['object_position']
|
296 |
+
loss2 = caculate_loss_LAC(att_second,att_first,att_third, bboxes=bboxes,
|
297 |
+
object_positions=object_positions, t = index1)*loss_scale
|
298 |
+
loss = loss2
|
299 |
+
print('LoCo loss', loss)
|
300 |
+
hh = torch.autograd.backward(loss, retain_graph=True)
|
301 |
+
grad_cond = x.grad
|
302 |
+
x = x - grad_cond
|
303 |
+
x = x.detach()
|
304 |
+
iteration += 1
|
305 |
+
torch.cuda.empty_cache()
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
def update_only_self(self, input,index1, index, ts,type_loss='self_accross' ):
|
311 |
+
if index1 < 10:
|
312 |
+
loss_scale = 4
|
313 |
+
max_iter = 5
|
314 |
+
elif index1 < 20:
|
315 |
+
loss_scale = 3
|
316 |
+
max_iter = 5
|
317 |
+
else:
|
318 |
+
loss_scale = 1
|
319 |
+
max_iter = 1
|
320 |
+
loss_threshold = 0.1
|
321 |
+
|
322 |
+
max_index = 30
|
323 |
+
x = deepcopy(input["x"])
|
324 |
+
iteration = 0
|
325 |
+
loss = torch.tensor(10000)
|
326 |
+
input["timesteps"] = ts
|
327 |
+
|
328 |
+
print("optimize", index1)
|
329 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
330 |
+
print('iter', iteration)
|
331 |
+
x = x.requires_grad_(True)
|
332 |
+
input['x'] = x
|
333 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
334 |
+
|
335 |
+
bboxes = input['boxes']
|
336 |
+
object_positions = input['object_position']
|
337 |
+
loss = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
|
338 |
+
object_positions=object_positions, t = index1)*loss_scale
|
339 |
+
print('loss', loss)
|
340 |
+
hh = torch.autograd.backward(loss)
|
341 |
+
grad_cond = x.grad
|
342 |
+
|
343 |
+
x = x - grad_cond
|
344 |
+
x = x.detach()
|
345 |
+
iteration += 1
|
346 |
+
torch.cuda.empty_cache()
|
347 |
+
return x
|
348 |
+
|
349 |
+
@torch.no_grad()
|
350 |
+
def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
|
351 |
+
x = deepcopy(input["x"])
|
352 |
+
b = x.shape[0]
|
353 |
+
|
354 |
+
def get_model_output(input):
|
355 |
+
e_t, first, second, third,_,_,_ = self.model(input)
|
356 |
+
if uc is not None and guidance_scale != 1:
|
357 |
+
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc, inpainting_extra_input=input["inpainting_extra_input"], grounding_extra_input=input['grounding_extra_input'])
|
358 |
+
e_t_uncond, _, _, _, _, _, _ = self.model( unconditional_input )
|
359 |
+
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
|
360 |
+
return e_t
|
361 |
+
|
362 |
+
|
363 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
364 |
+
# select parameters corresponding to the currently considered timestep
|
365 |
+
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
|
366 |
+
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
|
367 |
+
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
|
368 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
|
369 |
+
|
370 |
+
# current prediction for x_0
|
371 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
372 |
+
|
373 |
+
# direction pointing to x_t
|
374 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
375 |
+
noise = sigma_t * torch.randn_like(x)
|
376 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
377 |
+
return x_prev, pred_x0
|
378 |
+
|
379 |
+
input["timesteps"] = t
|
380 |
+
e_t = get_model_output(input)
|
381 |
+
if len(old_eps) == 0:
|
382 |
+
# Pseudo Improved Euler (2nd order)
|
383 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
384 |
+
input["x"] = x_prev
|
385 |
+
input["timesteps"] = t_next
|
386 |
+
e_t_next = get_model_output(input)
|
387 |
+
e_t_prime = (e_t + e_t_next) / 2
|
388 |
+
elif len(old_eps) == 1:
|
389 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
390 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
391 |
+
elif len(old_eps) == 2:
|
392 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
393 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
394 |
+
elif len(old_eps) >= 3:
|
395 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
396 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
397 |
+
|
398 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
399 |
+
|
400 |
+
return x_prev, pred_x0, e_t
|
401 |
+
|
402 |
+
|
gligen/ldm/modules/attention.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
# from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
|
9 |
+
from torch.utils import checkpoint
|
10 |
+
|
11 |
+
try:
|
12 |
+
import xformers
|
13 |
+
import xformers.ops
|
14 |
+
XFORMERS_IS_AVAILBLE = True
|
15 |
+
except:
|
16 |
+
XFORMERS_IS_AVAILBLE = False
|
17 |
+
|
18 |
+
|
19 |
+
def exists(val):
|
20 |
+
return val is not None
|
21 |
+
|
22 |
+
|
23 |
+
def uniq(arr):
|
24 |
+
return{el: True for el in arr}.keys()
|
25 |
+
|
26 |
+
|
27 |
+
def default(val, d):
|
28 |
+
if exists(val):
|
29 |
+
return val
|
30 |
+
return d() if isfunction(d) else d
|
31 |
+
|
32 |
+
|
33 |
+
def max_neg_value(t):
|
34 |
+
return -torch.finfo(t.dtype).max
|
35 |
+
|
36 |
+
|
37 |
+
def init_(tensor):
|
38 |
+
dim = tensor.shape[-1]
|
39 |
+
std = 1 / math.sqrt(dim)
|
40 |
+
tensor.uniform_(-std, std)
|
41 |
+
return tensor
|
42 |
+
|
43 |
+
|
44 |
+
# feedforward
|
45 |
+
class GEGLU(nn.Module):
|
46 |
+
def __init__(self, dim_in, dim_out):
|
47 |
+
super().__init__()
|
48 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
52 |
+
return x * F.gelu(gate)
|
53 |
+
|
54 |
+
|
55 |
+
class FeedForward(nn.Module):
|
56 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
57 |
+
super().__init__()
|
58 |
+
inner_dim = int(dim * mult)
|
59 |
+
dim_out = default(dim_out, dim)
|
60 |
+
project_in = nn.Sequential(
|
61 |
+
nn.Linear(dim, inner_dim),
|
62 |
+
nn.GELU()
|
63 |
+
) if not glu else GEGLU(dim, inner_dim)
|
64 |
+
|
65 |
+
self.net = nn.Sequential(
|
66 |
+
project_in,
|
67 |
+
nn.Dropout(dropout),
|
68 |
+
nn.Linear(inner_dim, dim_out)
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
return self.net(x)
|
73 |
+
|
74 |
+
|
75 |
+
def zero_module(module):
|
76 |
+
"""
|
77 |
+
Zero out the parameters of a module and return it.
|
78 |
+
"""
|
79 |
+
for p in module.parameters():
|
80 |
+
p.detach().zero_()
|
81 |
+
return module
|
82 |
+
|
83 |
+
|
84 |
+
def Normalize(in_channels):
|
85 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
86 |
+
|
87 |
+
|
88 |
+
class LinearAttention(nn.Module):
|
89 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
90 |
+
super().__init__()
|
91 |
+
self.heads = heads
|
92 |
+
hidden_dim = dim_head * heads
|
93 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
94 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
b, c, h, w = x.shape
|
98 |
+
qkv = self.to_qkv(x)
|
99 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
100 |
+
k = k.softmax(dim=-1)
|
101 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
102 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
103 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
104 |
+
return self.to_out(out)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
class CrossAttention(nn.Module):
|
110 |
+
def __init__(self, query_dim, key_dim, value_dim, heads=8, dim_head=64, dropout=0):
|
111 |
+
super().__init__()
|
112 |
+
inner_dim = dim_head * heads
|
113 |
+
self.scale = dim_head ** -0.5
|
114 |
+
self.heads = heads
|
115 |
+
self.dim_head = dim_head
|
116 |
+
|
117 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
118 |
+
self.to_k = nn.Linear(key_dim, inner_dim, bias=False)
|
119 |
+
self.to_v = nn.Linear(value_dim, inner_dim, bias=False)
|
120 |
+
|
121 |
+
|
122 |
+
self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
|
123 |
+
|
124 |
+
|
125 |
+
def fill_inf_from_mask(self, sim, mask):
|
126 |
+
if mask is not None:
|
127 |
+
B,M = mask.shape
|
128 |
+
mask = mask.unsqueeze(1).repeat(1,self.heads,1).reshape(B*self.heads,1,-1)
|
129 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
130 |
+
sim.masked_fill_(~mask, max_neg_value)
|
131 |
+
return sim
|
132 |
+
|
133 |
+
def forward_plain(self, x, key, value, mask=None):
|
134 |
+
|
135 |
+
q = self.to_q(x) # B*N*(H*C)
|
136 |
+
k = self.to_k(key) # B*M*(H*C)
|
137 |
+
v = self.to_v(value) # B*M*(H*C)
|
138 |
+
|
139 |
+
B, N, HC = q.shape
|
140 |
+
_, M, _ = key.shape
|
141 |
+
H = self.heads
|
142 |
+
C = HC // H
|
143 |
+
|
144 |
+
q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
|
145 |
+
k = k.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
|
146 |
+
v = v.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
|
147 |
+
|
148 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale # (B*H)*N*M
|
149 |
+
self.fill_inf_from_mask(sim, mask)
|
150 |
+
attn = sim.softmax(dim=-1) # (B*H)*N*M
|
151 |
+
|
152 |
+
out = torch.einsum('b i j, b j d -> b i d', attn, v) # (B*H)*N*C
|
153 |
+
out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
|
154 |
+
|
155 |
+
return self.to_out(out)
|
156 |
+
|
157 |
+
def forward(self, x, key, value, mask=None):
|
158 |
+
if not XFORMERS_IS_AVAILBLE:
|
159 |
+
return self.forward_plain(x, key, value, mask)
|
160 |
+
|
161 |
+
q = self.to_q(x) # B*N*(H*C)
|
162 |
+
k = self.to_k(key) # B*M*(H*C)
|
163 |
+
v = self.to_v(value) # B*M*(H*C)
|
164 |
+
|
165 |
+
b, _, _ = q.shape
|
166 |
+
q, k, v = map(
|
167 |
+
lambda t: t.unsqueeze(3)
|
168 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
169 |
+
.permute(0, 2, 1, 3)
|
170 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
171 |
+
.contiguous(),
|
172 |
+
(q, k, v),
|
173 |
+
)
|
174 |
+
|
175 |
+
# actually compute the attention, what we cannot get enough of
|
176 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
177 |
+
|
178 |
+
if exists(mask):
|
179 |
+
raise NotImplementedError
|
180 |
+
out = (
|
181 |
+
out.unsqueeze(0)
|
182 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
183 |
+
.permute(0, 2, 1, 3)
|
184 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
185 |
+
)
|
186 |
+
return self.to_out(out)
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
class SelfAttention(nn.Module):
|
193 |
+
def __init__(self, query_dim, heads=8, dim_head=64, dropout=0.):
|
194 |
+
super().__init__()
|
195 |
+
inner_dim = dim_head * heads
|
196 |
+
self.scale = dim_head ** -0.5
|
197 |
+
self.heads = heads
|
198 |
+
self.dim_head = dim_head
|
199 |
+
|
200 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
201 |
+
self.to_k = nn.Linear(query_dim, inner_dim, bias=False)
|
202 |
+
self.to_v = nn.Linear(query_dim, inner_dim, bias=False)
|
203 |
+
|
204 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
|
205 |
+
|
206 |
+
def forward_plain(self, x):
|
207 |
+
q = self.to_q(x) # B*N*(H*C)
|
208 |
+
k = self.to_k(x) # B*N*(H*C)
|
209 |
+
v = self.to_v(x) # B*N*(H*C)
|
210 |
+
|
211 |
+
B, N, HC = q.shape
|
212 |
+
H = self.heads
|
213 |
+
C = HC // H
|
214 |
+
|
215 |
+
q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
|
216 |
+
k = k.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
|
217 |
+
v = v.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
|
218 |
+
|
219 |
+
sim = torch.einsum('b i c, b j c -> b i j', q, k) * self.scale # (B*H)*N*N
|
220 |
+
attn = sim.softmax(dim=-1) # (B*H)*N*N
|
221 |
+
|
222 |
+
out = torch.einsum('b i j, b j c -> b i c', attn, v) # (B*H)*N*C
|
223 |
+
out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
|
224 |
+
|
225 |
+
return self.to_out(out)
|
226 |
+
|
227 |
+
def forward(self, x, context=None, mask=None):
|
228 |
+
if not XFORMERS_IS_AVAILBLE:
|
229 |
+
return self.forward_plain(x)
|
230 |
+
|
231 |
+
q = self.to_q(x)
|
232 |
+
context = default(context, x)
|
233 |
+
k = self.to_k(context)
|
234 |
+
v = self.to_v(context)
|
235 |
+
|
236 |
+
b, _, _ = q.shape
|
237 |
+
q, k, v = map(
|
238 |
+
lambda t: t.unsqueeze(3)
|
239 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
240 |
+
.permute(0, 2, 1, 3)
|
241 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
242 |
+
.contiguous(),
|
243 |
+
(q, k, v),
|
244 |
+
)
|
245 |
+
|
246 |
+
# actually compute the attention, what we cannot get enough of
|
247 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
248 |
+
|
249 |
+
if exists(mask):
|
250 |
+
raise NotImplementedError
|
251 |
+
out = (
|
252 |
+
out.unsqueeze(0)
|
253 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
254 |
+
.permute(0, 2, 1, 3)
|
255 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
256 |
+
)
|
257 |
+
return self.to_out(out)
|
258 |
+
|
259 |
+
|
260 |
+
class GatedCrossAttentionDense(nn.Module):
|
261 |
+
def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head):
|
262 |
+
super().__init__()
|
263 |
+
|
264 |
+
self.attn = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
|
265 |
+
self.ff = FeedForward(query_dim, glu=True)
|
266 |
+
|
267 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
268 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
269 |
+
|
270 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
|
271 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
|
272 |
+
|
273 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
274 |
+
# for example, when it is set to 0, then the entire model is same as original one
|
275 |
+
self.scale = 1
|
276 |
+
|
277 |
+
def forward(self, x, objs):
|
278 |
+
|
279 |
+
x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(x), objs, objs)
|
280 |
+
x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
|
281 |
+
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
class GatedSelfAttentionDense(nn.Module):
|
286 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
287 |
+
super().__init__()
|
288 |
+
|
289 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
290 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
291 |
+
|
292 |
+
self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
293 |
+
self.ff = FeedForward(query_dim, glu=True)
|
294 |
+
|
295 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
296 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
297 |
+
|
298 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
|
299 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
|
300 |
+
|
301 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
302 |
+
# for example, when it is set to 0, then the entire model is same as original one
|
303 |
+
self.scale = 1
|
304 |
+
|
305 |
+
|
306 |
+
def forward(self, x, objs):
|
307 |
+
|
308 |
+
N_visual = x.shape[1]
|
309 |
+
objs = self.linear(objs)
|
310 |
+
|
311 |
+
x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(torch.cat([x,objs],dim=1)) )[:,0:N_visual,:]
|
312 |
+
x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
|
313 |
+
|
314 |
+
return x
|
315 |
+
|
316 |
+
|
317 |
+
class BasicTransformerBlock(nn.Module):
|
318 |
+
def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=True):
|
319 |
+
super().__init__()
|
320 |
+
self.attn1 = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
321 |
+
self.ff = FeedForward(query_dim, glu=True)
|
322 |
+
self.attn2 = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
|
323 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
324 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
325 |
+
self.norm3 = nn.LayerNorm(query_dim)
|
326 |
+
self.use_checkpoint = use_checkpoint
|
327 |
+
|
328 |
+
if fuser_type == "gatedSA":
|
329 |
+
# note key_dim here actually is context_dim
|
330 |
+
self.fuser = GatedSelfAttentionDense(query_dim, key_dim, n_heads, d_head)
|
331 |
+
elif fuser_type == "gatedCA":
|
332 |
+
self.fuser = GatedCrossAttentionDense(query_dim, key_dim, value_dim, n_heads, d_head)
|
333 |
+
else:
|
334 |
+
assert False
|
335 |
+
|
336 |
+
|
337 |
+
def forward(self, x, context, objs):
|
338 |
+
# return checkpoint(self._forward, (x, context, objs), self.parameters(), self.use_checkpoint)
|
339 |
+
if self.use_checkpoint and x.requires_grad:
|
340 |
+
return checkpoint.checkpoint(self._forward, x, context, objs)
|
341 |
+
else:
|
342 |
+
return self._forward(x, context, objs)
|
343 |
+
|
344 |
+
def _forward(self, x, context, objs):
|
345 |
+
x = self.attn1( self.norm1(x) ) + x
|
346 |
+
x = self.fuser(x, objs) # identity mapping in the beginning
|
347 |
+
x = self.attn2(self.norm2(x), context, context) + x
|
348 |
+
x = self.ff(self.norm3(x)) + x
|
349 |
+
return x
|
350 |
+
|
351 |
+
|
352 |
+
class SpatialTransformer(nn.Module):
|
353 |
+
def __init__(self, in_channels, key_dim, value_dim, n_heads, d_head, depth=1, fuser_type=None, use_checkpoint=True):
|
354 |
+
super().__init__()
|
355 |
+
self.in_channels = in_channels
|
356 |
+
query_dim = n_heads * d_head
|
357 |
+
self.norm = Normalize(in_channels)
|
358 |
+
|
359 |
+
|
360 |
+
self.proj_in = nn.Conv2d(in_channels,
|
361 |
+
query_dim,
|
362 |
+
kernel_size=1,
|
363 |
+
stride=1,
|
364 |
+
padding=0)
|
365 |
+
|
366 |
+
self.transformer_blocks = nn.ModuleList(
|
367 |
+
[BasicTransformerBlock(query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=use_checkpoint)
|
368 |
+
for d in range(depth)]
|
369 |
+
)
|
370 |
+
|
371 |
+
self.proj_out = zero_module(nn.Conv2d(query_dim,
|
372 |
+
in_channels,
|
373 |
+
kernel_size=1,
|
374 |
+
stride=1,
|
375 |
+
padding=0))
|
376 |
+
|
377 |
+
def forward(self, x, context, objs):
|
378 |
+
b, c, h, w = x.shape
|
379 |
+
x_in = x
|
380 |
+
x = self.norm(x)
|
381 |
+
x = self.proj_in(x)
|
382 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
383 |
+
for block in self.transformer_blocks:
|
384 |
+
x = block(x, context, objs)
|
385 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
386 |
+
x = self.proj_out(x)
|
387 |
+
return x + x_in
|
gligen/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
gligen/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
from ldm.modules.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
gligen/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
conv_nd,
|
13 |
+
linear,
|
14 |
+
avg_pool_nd,
|
15 |
+
zero_module,
|
16 |
+
normalization,
|
17 |
+
timestep_embedding,
|
18 |
+
)
|
19 |
+
from ldm.modules.attention import SpatialTransformer
|
20 |
+
from torch.utils import checkpoint
|
21 |
+
|
22 |
+
class TimestepBlock(nn.Module):
|
23 |
+
"""
|
24 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
25 |
+
"""
|
26 |
+
|
27 |
+
@abstractmethod
|
28 |
+
def forward(self, x, emb):
|
29 |
+
"""
|
30 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
35 |
+
"""
|
36 |
+
A sequential module that passes timestep embeddings to the children that
|
37 |
+
support it as an extra input.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def forward(self, x, emb, context, objs):
|
41 |
+
for layer in self:
|
42 |
+
if isinstance(layer, TimestepBlock):
|
43 |
+
x = layer(x, emb)
|
44 |
+
elif isinstance(layer, SpatialTransformer):
|
45 |
+
x = layer(x, context, objs)
|
46 |
+
else:
|
47 |
+
x = layer(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
|
51 |
+
class Upsample(nn.Module):
|
52 |
+
"""
|
53 |
+
An upsampling layer with an optional convolution.
|
54 |
+
:param channels: channels in the inputs and outputs.
|
55 |
+
:param use_conv: a bool determining if a convolution is applied.
|
56 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
57 |
+
upsampling occurs in the inner-two dimensions.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
61 |
+
super().__init__()
|
62 |
+
self.channels = channels
|
63 |
+
self.out_channels = out_channels or channels
|
64 |
+
self.use_conv = use_conv
|
65 |
+
self.dims = dims
|
66 |
+
if use_conv:
|
67 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
assert x.shape[1] == self.channels
|
71 |
+
if self.dims == 3:
|
72 |
+
x = F.interpolate(
|
73 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
77 |
+
if self.use_conv:
|
78 |
+
x = self.conv(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
class Downsample(nn.Module):
|
85 |
+
"""
|
86 |
+
A downsampling layer with an optional convolution.
|
87 |
+
:param channels: channels in the inputs and outputs.
|
88 |
+
:param use_conv: a bool determining if a convolution is applied.
|
89 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
90 |
+
downsampling occurs in the inner-two dimensions.
|
91 |
+
"""
|
92 |
+
|
93 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
94 |
+
super().__init__()
|
95 |
+
self.channels = channels
|
96 |
+
self.out_channels = out_channels or channels
|
97 |
+
self.use_conv = use_conv
|
98 |
+
self.dims = dims
|
99 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
100 |
+
if use_conv:
|
101 |
+
self.op = conv_nd(
|
102 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
assert self.channels == self.out_channels
|
106 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
assert x.shape[1] == self.channels
|
110 |
+
return self.op(x)
|
111 |
+
|
112 |
+
|
113 |
+
class ResBlock(TimestepBlock):
|
114 |
+
"""
|
115 |
+
A residual block that can optionally change the number of channels.
|
116 |
+
:param channels: the number of input channels.
|
117 |
+
:param emb_channels: the number of timestep embedding channels.
|
118 |
+
:param dropout: the rate of dropout.
|
119 |
+
:param out_channels: if specified, the number of out channels.
|
120 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
121 |
+
convolution instead of a smaller 1x1 convolution to change the
|
122 |
+
channels in the skip connection.
|
123 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
124 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
125 |
+
:param up: if True, use this block for upsampling.
|
126 |
+
:param down: if True, use this block for downsampling.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
channels,
|
132 |
+
emb_channels,
|
133 |
+
dropout,
|
134 |
+
out_channels=None,
|
135 |
+
use_conv=False,
|
136 |
+
use_scale_shift_norm=False,
|
137 |
+
dims=2,
|
138 |
+
use_checkpoint=False,
|
139 |
+
up=False,
|
140 |
+
down=False,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.channels = channels
|
144 |
+
self.emb_channels = emb_channels
|
145 |
+
self.dropout = dropout
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.use_checkpoint = use_checkpoint
|
149 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
150 |
+
|
151 |
+
self.in_layers = nn.Sequential(
|
152 |
+
normalization(channels),
|
153 |
+
nn.SiLU(),
|
154 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.updown = up or down
|
158 |
+
|
159 |
+
if up:
|
160 |
+
self.h_upd = Upsample(channels, False, dims)
|
161 |
+
self.x_upd = Upsample(channels, False, dims)
|
162 |
+
elif down:
|
163 |
+
self.h_upd = Downsample(channels, False, dims)
|
164 |
+
self.x_upd = Downsample(channels, False, dims)
|
165 |
+
else:
|
166 |
+
self.h_upd = self.x_upd = nn.Identity()
|
167 |
+
|
168 |
+
self.emb_layers = nn.Sequential(
|
169 |
+
nn.SiLU(),
|
170 |
+
linear(
|
171 |
+
emb_channels,
|
172 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
173 |
+
),
|
174 |
+
)
|
175 |
+
self.out_layers = nn.Sequential(
|
176 |
+
normalization(self.out_channels),
|
177 |
+
nn.SiLU(),
|
178 |
+
nn.Dropout(p=dropout),
|
179 |
+
zero_module(
|
180 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
181 |
+
),
|
182 |
+
)
|
183 |
+
|
184 |
+
if self.out_channels == channels:
|
185 |
+
self.skip_connection = nn.Identity()
|
186 |
+
elif use_conv:
|
187 |
+
self.skip_connection = conv_nd(
|
188 |
+
dims, channels, self.out_channels, 3, padding=1
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
192 |
+
|
193 |
+
def forward(self, x, emb):
|
194 |
+
"""
|
195 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
196 |
+
:param x: an [N x C x ...] Tensor of features.
|
197 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
198 |
+
:return: an [N x C x ...] Tensor of outputs.
|
199 |
+
"""
|
200 |
+
# return checkpoint(
|
201 |
+
# self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
202 |
+
# )
|
203 |
+
if self.use_checkpoint and x.requires_grad:
|
204 |
+
return checkpoint.checkpoint(self._forward, x, emb )
|
205 |
+
else:
|
206 |
+
return self._forward(x, emb)
|
207 |
+
|
208 |
+
|
209 |
+
def _forward(self, x, emb):
|
210 |
+
if self.updown:
|
211 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
212 |
+
h = in_rest(x)
|
213 |
+
h = self.h_upd(h)
|
214 |
+
x = self.x_upd(x)
|
215 |
+
h = in_conv(h)
|
216 |
+
else:
|
217 |
+
h = self.in_layers(x)
|
218 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
219 |
+
while len(emb_out.shape) < len(h.shape):
|
220 |
+
emb_out = emb_out[..., None]
|
221 |
+
if self.use_scale_shift_norm:
|
222 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
223 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
224 |
+
h = out_norm(h) * (1 + scale) + shift
|
225 |
+
h = out_rest(h)
|
226 |
+
else:
|
227 |
+
h = h + emb_out
|
228 |
+
h = self.out_layers(h)
|
229 |
+
return self.skip_connection(x) + h
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
class UNetModel(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
image_size,
|
238 |
+
in_channels,
|
239 |
+
model_channels,
|
240 |
+
out_channels,
|
241 |
+
num_res_blocks,
|
242 |
+
attention_resolutions,
|
243 |
+
dropout=0,
|
244 |
+
channel_mult=(1, 2, 4, 8),
|
245 |
+
conv_resample=True,
|
246 |
+
dims=2,
|
247 |
+
use_checkpoint=False,
|
248 |
+
num_heads=8,
|
249 |
+
use_scale_shift_norm=False,
|
250 |
+
transformer_depth=1,
|
251 |
+
positive_len = 768, # this is pre-processing embedding len for each 'obj/box'
|
252 |
+
context_dim=None,
|
253 |
+
fuser_type = None,
|
254 |
+
is_inpaint = False,
|
255 |
+
is_style = False,
|
256 |
+
):
|
257 |
+
super().__init__()
|
258 |
+
|
259 |
+
self.image_size = image_size
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.model_channels = model_channels
|
262 |
+
self.out_channels = out_channels
|
263 |
+
self.num_res_blocks = num_res_blocks
|
264 |
+
self.attention_resolutions = attention_resolutions
|
265 |
+
self.dropout = dropout
|
266 |
+
self.channel_mult = channel_mult
|
267 |
+
self.conv_resample = conv_resample
|
268 |
+
self.use_checkpoint = use_checkpoint
|
269 |
+
self.num_heads = num_heads
|
270 |
+
self.positive_len = positive_len
|
271 |
+
self.context_dim = context_dim
|
272 |
+
self.fuser_type = fuser_type
|
273 |
+
self.is_inpaint = is_inpaint
|
274 |
+
self.is_style = is_style
|
275 |
+
self.use_o2 = False # This will be turned into True by externally if use o2 durining training
|
276 |
+
assert fuser_type in ["gatedSA", "gatedCA"]
|
277 |
+
|
278 |
+
|
279 |
+
time_embed_dim = model_channels * 4
|
280 |
+
self.time_embed = nn.Sequential(
|
281 |
+
linear(model_channels, time_embed_dim),
|
282 |
+
nn.SiLU(),
|
283 |
+
linear(time_embed_dim, time_embed_dim),
|
284 |
+
)
|
285 |
+
|
286 |
+
|
287 |
+
total_in_channels = in_channels+in_channels+1 if self.is_inpaint else in_channels
|
288 |
+
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, total_in_channels, model_channels, 3, padding=1))])
|
289 |
+
|
290 |
+
input_block_chans = [model_channels]
|
291 |
+
ch = model_channels
|
292 |
+
ds = 1
|
293 |
+
|
294 |
+
# = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = #
|
295 |
+
for level, mult in enumerate(channel_mult):
|
296 |
+
for _ in range(num_res_blocks):
|
297 |
+
layers = [ ResBlock(ch,
|
298 |
+
time_embed_dim,
|
299 |
+
dropout,
|
300 |
+
out_channels=mult * model_channels,
|
301 |
+
dims=dims,
|
302 |
+
use_checkpoint=use_checkpoint,
|
303 |
+
use_scale_shift_norm=use_scale_shift_norm,) ]
|
304 |
+
|
305 |
+
ch = mult * model_channels
|
306 |
+
if ds in attention_resolutions:
|
307 |
+
dim_head = ch // num_heads
|
308 |
+
layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint))
|
309 |
+
|
310 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
311 |
+
input_block_chans.append(ch)
|
312 |
+
|
313 |
+
if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature
|
314 |
+
out_ch = ch
|
315 |
+
self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) )
|
316 |
+
ch = out_ch
|
317 |
+
input_block_chans.append(ch)
|
318 |
+
ds *= 2
|
319 |
+
dim_head = ch // num_heads
|
320 |
+
|
321 |
+
# self.input_blocks = [ C | RT RT D | RT RT D | RT RT D | R R ]
|
322 |
+
|
323 |
+
|
324 |
+
# = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = #
|
325 |
+
|
326 |
+
self.middle_block = TimestepEmbedSequential(
|
327 |
+
ResBlock(ch,
|
328 |
+
time_embed_dim,
|
329 |
+
dropout,
|
330 |
+
dims=dims,
|
331 |
+
use_checkpoint=use_checkpoint,
|
332 |
+
use_scale_shift_norm=use_scale_shift_norm),
|
333 |
+
SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint),
|
334 |
+
ResBlock(ch,
|
335 |
+
time_embed_dim,
|
336 |
+
dropout,
|
337 |
+
dims=dims,
|
338 |
+
use_checkpoint=use_checkpoint,
|
339 |
+
use_scale_shift_norm=use_scale_shift_norm))
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
# = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = #
|
344 |
+
|
345 |
+
|
346 |
+
self.output_blocks = nn.ModuleList([])
|
347 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
348 |
+
for i in range(num_res_blocks + 1):
|
349 |
+
ich = input_block_chans.pop()
|
350 |
+
layers = [ ResBlock(ch + ich,
|
351 |
+
time_embed_dim,
|
352 |
+
dropout,
|
353 |
+
out_channels=model_channels * mult,
|
354 |
+
dims=dims,
|
355 |
+
use_checkpoint=use_checkpoint,
|
356 |
+
use_scale_shift_norm=use_scale_shift_norm) ]
|
357 |
+
ch = model_channels * mult
|
358 |
+
|
359 |
+
if ds in attention_resolutions:
|
360 |
+
dim_head = ch // num_heads
|
361 |
+
layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) )
|
362 |
+
if level and i == num_res_blocks:
|
363 |
+
out_ch = ch
|
364 |
+
layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) )
|
365 |
+
ds //= 2
|
366 |
+
|
367 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
368 |
+
|
369 |
+
|
370 |
+
# self.output_blocks = [ R R RU | RT RT RTU | RT RT RTU | RT RT RT ]
|
371 |
+
|
372 |
+
|
373 |
+
self.out = nn.Sequential(
|
374 |
+
normalization(ch),
|
375 |
+
nn.SiLU(),
|
376 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
377 |
+
)
|
378 |
+
|
379 |
+
if self.is_style:
|
380 |
+
from .positionnet_with_image import PositionNet
|
381 |
+
else:
|
382 |
+
from .positionnet import PositionNet
|
383 |
+
self.position_net = PositionNet(positive_len=positive_len, out_dim=context_dim)
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
def forward_position_net(self,input):
|
389 |
+
if ("boxes" in input):
|
390 |
+
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
|
391 |
+
_ , self.max_box, _ = text_embeddings.shape
|
392 |
+
else:
|
393 |
+
dtype = input["x"].dtype
|
394 |
+
batch = input["x"].shape[0]
|
395 |
+
device = input["x"].device
|
396 |
+
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
|
397 |
+
masks = th.zeros(batch, self.max_box).type(dtype).to(device)
|
398 |
+
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
|
399 |
+
if self.training and random.random() < 0.1: # random drop for guidance
|
400 |
+
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
|
401 |
+
|
402 |
+
objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C
|
403 |
+
|
404 |
+
return objs
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
def forward_position_net_with_image(self,input):
|
411 |
+
|
412 |
+
if ("boxes" in input):
|
413 |
+
boxes = input["boxes"]
|
414 |
+
masks = input["masks"]
|
415 |
+
text_masks = input["text_masks"]
|
416 |
+
image_masks = input["image_masks"]
|
417 |
+
text_embeddings = input["text_embeddings"]
|
418 |
+
image_embeddings = input["image_embeddings"]
|
419 |
+
_ , self.max_box, _ = text_embeddings.shape
|
420 |
+
else:
|
421 |
+
dtype = input["x"].dtype
|
422 |
+
batch = input["x"].shape[0]
|
423 |
+
device = input["x"].device
|
424 |
+
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
|
425 |
+
masks = th.zeros(batch, self.max_box).type(dtype).to(device)
|
426 |
+
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
|
427 |
+
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
|
428 |
+
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
|
429 |
+
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
|
430 |
+
|
431 |
+
if self.training and random.random() < 0.1: # random drop for guidance
|
432 |
+
boxes = boxes*0
|
433 |
+
masks = masks*0
|
434 |
+
text_masks = text_masks*0
|
435 |
+
image_masks = image_masks*0
|
436 |
+
text_embeddings = text_embeddings*0
|
437 |
+
image_embeddings = image_embeddings*0
|
438 |
+
|
439 |
+
objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C
|
440 |
+
|
441 |
+
return objs
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
def forward(self, input):
|
448 |
+
|
449 |
+
if self.is_style:
|
450 |
+
objs = self.forward_position_net_with_image(input)
|
451 |
+
else:
|
452 |
+
objs = self.forward_position_net(input)
|
453 |
+
|
454 |
+
|
455 |
+
hs = []
|
456 |
+
|
457 |
+
t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False)
|
458 |
+
if self.use_o2:
|
459 |
+
t_emb = t_emb.to(th.float16) # not sure why apex will not cast this
|
460 |
+
emb = self.time_embed(t_emb)
|
461 |
+
|
462 |
+
|
463 |
+
h = input["x"]
|
464 |
+
if self.is_inpaint:
|
465 |
+
h = th.cat( [h, input["inpainting_extra_input"]], dim=1 )
|
466 |
+
context = input["context"]
|
467 |
+
|
468 |
+
|
469 |
+
for module in self.input_blocks:
|
470 |
+
h = module(h, emb, context, objs)
|
471 |
+
hs.append(h)
|
472 |
+
|
473 |
+
h = self.middle_block(h, emb, context, objs)
|
474 |
+
|
475 |
+
for module in self.output_blocks:
|
476 |
+
h = th.cat([h, hs.pop()], dim=1)
|
477 |
+
h = module(h, emb, context, objs)
|
478 |
+
|
479 |
+
return self.out(h)
|
480 |
+
|
481 |
+
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
gligen/ldm/modules/diffusionmodules/positionnet.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from ldm.modules.attention import BasicTransformerBlock
|
4 |
+
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class PositionNet(nn.Module):
|
10 |
+
def __init__(self, positive_len, out_dim, fourier_freqs=8):
|
11 |
+
super().__init__()
|
12 |
+
self.positive_len = positive_len
|
13 |
+
self.out_dim = out_dim
|
14 |
+
|
15 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
16 |
+
self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
|
17 |
+
|
18 |
+
self.linears = nn.Sequential(
|
19 |
+
nn.Linear( self.positive_len + self.position_dim, 512),
|
20 |
+
nn.SiLU(),
|
21 |
+
nn.Linear( 512, 512),
|
22 |
+
nn.SiLU(),
|
23 |
+
nn.Linear(512, out_dim),
|
24 |
+
)
|
25 |
+
|
26 |
+
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
27 |
+
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
|
28 |
+
|
29 |
+
|
30 |
+
def forward(self, boxes, masks, positive_embeddings):
|
31 |
+
B, N, _ = boxes.shape
|
32 |
+
masks = masks.unsqueeze(-1)
|
33 |
+
|
34 |
+
# embedding position (it may includes padding as placeholder)
|
35 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
36 |
+
|
37 |
+
# learnable null embedding
|
38 |
+
positive_null = self.null_positive_feature.view(1,1,-1)
|
39 |
+
xyxy_null = self.null_position_feature.view(1,1,-1)
|
40 |
+
|
41 |
+
# replace padding with learnable null embedding
|
42 |
+
positive_embeddings = positive_embeddings*masks + (1-masks)*positive_null
|
43 |
+
xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
|
44 |
+
|
45 |
+
objs = self.linears( torch.cat([positive_embeddings, xyxy_embedding], dim=-1) )
|
46 |
+
assert objs.shape == torch.Size([B,N,self.out_dim])
|
47 |
+
return objs
|
48 |
+
|
49 |
+
|
50 |
+
|
gligen/ldm/modules/diffusionmodules/positionnet_with_image.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from ldm.modules.attention import BasicTransformerBlock
|
4 |
+
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class PositionNet(nn.Module):
|
10 |
+
def __init__(self, positive_len, out_dim, fourier_freqs=8):
|
11 |
+
super().__init__()
|
12 |
+
self.positive_len = positive_len
|
13 |
+
self.out_dim = out_dim
|
14 |
+
|
15 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
16 |
+
self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
|
17 |
+
|
18 |
+
# -------------------------------------------------------------- #
|
19 |
+
self.linears_text = nn.Sequential(
|
20 |
+
nn.Linear( self.positive_len + self.position_dim, 512),
|
21 |
+
nn.SiLU(),
|
22 |
+
nn.Linear( 512, 512),
|
23 |
+
nn.SiLU(),
|
24 |
+
nn.Linear(512, out_dim),
|
25 |
+
)
|
26 |
+
|
27 |
+
self.linears_image = nn.Sequential(
|
28 |
+
nn.Linear( self.positive_len + self.position_dim, 512),
|
29 |
+
nn.SiLU(),
|
30 |
+
nn.Linear( 512, 512),
|
31 |
+
nn.SiLU(),
|
32 |
+
nn.Linear(512, out_dim),
|
33 |
+
)
|
34 |
+
|
35 |
+
# -------------------------------------------------------------- #
|
36 |
+
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
37 |
+
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
38 |
+
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
|
39 |
+
|
40 |
+
|
41 |
+
def forward(self, boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings):
|
42 |
+
B, N, _ = boxes.shape
|
43 |
+
masks = masks.unsqueeze(-1) # B*N*1
|
44 |
+
text_masks = text_masks.unsqueeze(-1) # B*N*1
|
45 |
+
image_masks = image_masks.unsqueeze(-1) # B*N*1
|
46 |
+
|
47 |
+
# embedding position (it may includes padding as placeholder)
|
48 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
49 |
+
|
50 |
+
# learnable null embedding
|
51 |
+
text_null = self.null_text_feature.view(1,1,-1) # 1*1*C
|
52 |
+
image_null = self.null_image_feature.view(1,1,-1) # 1*1*C
|
53 |
+
xyxy_null = self.null_position_feature.view(1,1,-1) # 1*1*C
|
54 |
+
|
55 |
+
# replace padding with learnable null embedding
|
56 |
+
text_embeddings = text_embeddings*text_masks + (1-text_masks)*text_null
|
57 |
+
image_embeddings = image_embeddings*image_masks + (1-image_masks)*image_null
|
58 |
+
xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
|
59 |
+
|
60 |
+
objs_text = self.linears_text( torch.cat([text_embeddings, xyxy_embedding], dim=-1) )
|
61 |
+
objs_image = self.linears_image( torch.cat([image_embeddings,xyxy_embedding], dim=-1) )
|
62 |
+
objs = torch.cat( [objs_text,objs_image], dim=1 )
|
63 |
+
|
64 |
+
assert objs.shape == torch.Size([B,N*2,self.out_dim])
|
65 |
+
return objs
|
66 |
+
|
67 |
+
|
68 |
+
|
gligen/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class FourierEmbedder():
|
13 |
+
def __init__(self, num_freqs=64, temperature=100):
|
14 |
+
|
15 |
+
self.num_freqs = num_freqs
|
16 |
+
self.temperature = temperature
|
17 |
+
self.freq_bands = temperature ** ( torch.arange(num_freqs) / num_freqs )
|
18 |
+
|
19 |
+
@ torch.no_grad()
|
20 |
+
def __call__(self, x, cat_dim=-1):
|
21 |
+
"x: arbitrary shape of tensor. dim: cat dim"
|
22 |
+
out = []
|
23 |
+
for freq in self.freq_bands:
|
24 |
+
out.append( torch.sin( freq*x ) )
|
25 |
+
out.append( torch.cos( freq*x ) )
|
26 |
+
return torch.cat(out, cat_dim)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
31 |
+
if schedule == "linear":
|
32 |
+
betas = (
|
33 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
34 |
+
)
|
35 |
+
|
36 |
+
elif schedule == "cosine":
|
37 |
+
timesteps = (
|
38 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
39 |
+
)
|
40 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
41 |
+
alphas = torch.cos(alphas).pow(2)
|
42 |
+
alphas = alphas / alphas[0]
|
43 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
44 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
45 |
+
|
46 |
+
elif schedule == "sqrt_linear":
|
47 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
48 |
+
elif schedule == "sqrt":
|
49 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
50 |
+
else:
|
51 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
52 |
+
return betas.numpy()
|
53 |
+
|
54 |
+
|
55 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
56 |
+
if ddim_discr_method == 'uniform':
|
57 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
58 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
59 |
+
elif ddim_discr_method == 'quad':
|
60 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
61 |
+
else:
|
62 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
63 |
+
|
64 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
65 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
66 |
+
steps_out = ddim_timesteps + 1
|
67 |
+
if verbose:
|
68 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
69 |
+
return steps_out
|
70 |
+
|
71 |
+
|
72 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
73 |
+
# select alphas for computing the variance schedule
|
74 |
+
alphas = alphacums[ddim_timesteps]
|
75 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
76 |
+
|
77 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
78 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
79 |
+
if verbose:
|
80 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
81 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
82 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
83 |
+
return sigmas, alphas, alphas_prev
|
84 |
+
|
85 |
+
|
86 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
87 |
+
"""
|
88 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
89 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
90 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
91 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
92 |
+
produces the cumulative product of (1-beta) up to that
|
93 |
+
part of the diffusion process.
|
94 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
95 |
+
prevent singularities.
|
96 |
+
"""
|
97 |
+
betas = []
|
98 |
+
for i in range(num_diffusion_timesteps):
|
99 |
+
t1 = i / num_diffusion_timesteps
|
100 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
101 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
102 |
+
return np.array(betas)
|
103 |
+
|
104 |
+
|
105 |
+
def extract_into_tensor(a, t, x_shape):
|
106 |
+
b, *_ = t.shape
|
107 |
+
out = a.gather(-1, t)
|
108 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
109 |
+
|
110 |
+
|
111 |
+
def checkpoint(func, inputs, params, flag):
|
112 |
+
"""
|
113 |
+
Evaluate a function without caching intermediate activations, allowing for
|
114 |
+
reduced memory at the expense of extra compute in the backward pass.
|
115 |
+
:param func: the function to evaluate.
|
116 |
+
:param inputs: the argument sequence to pass to `func`.
|
117 |
+
:param params: a sequence of parameters `func` depends on but does not
|
118 |
+
explicitly take as arguments.
|
119 |
+
:param flag: if False, disable gradient checkpointing.
|
120 |
+
"""
|
121 |
+
if flag:
|
122 |
+
args = tuple(inputs) + tuple(params)
|
123 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
124 |
+
else:
|
125 |
+
return func(*inputs)
|
126 |
+
|
127 |
+
|
128 |
+
class CheckpointFunction(torch.autograd.Function):
|
129 |
+
@staticmethod
|
130 |
+
def forward(ctx, run_function, length, *args):
|
131 |
+
ctx.run_function = run_function
|
132 |
+
ctx.input_tensors = list(args[:length])
|
133 |
+
ctx.input_params = list(args[length:])
|
134 |
+
|
135 |
+
with torch.no_grad():
|
136 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
137 |
+
return output_tensors
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def backward(ctx, *output_grads):
|
141 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
142 |
+
with torch.enable_grad():
|
143 |
+
# Fixes a bug where the first op in run_function modifies the
|
144 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
145 |
+
# Tensors.
|
146 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
147 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
148 |
+
input_grads = torch.autograd.grad(
|
149 |
+
output_tensors,
|
150 |
+
ctx.input_tensors + ctx.input_params,
|
151 |
+
output_grads,
|
152 |
+
allow_unused=True,
|
153 |
+
)
|
154 |
+
del ctx.input_tensors
|
155 |
+
del ctx.input_params
|
156 |
+
del output_tensors
|
157 |
+
return (None, None) + input_grads
|
158 |
+
|
159 |
+
|
160 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
161 |
+
"""
|
162 |
+
Create sinusoidal timestep embeddings.
|
163 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
164 |
+
These may be fractional.
|
165 |
+
:param dim: the dimension of the output.
|
166 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
167 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
168 |
+
"""
|
169 |
+
if not repeat_only:
|
170 |
+
half = dim // 2
|
171 |
+
freqs = torch.exp(
|
172 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
173 |
+
).to(device=timesteps.device)
|
174 |
+
args = timesteps[:, None].float() * freqs[None]
|
175 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
176 |
+
if dim % 2:
|
177 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
178 |
+
else:
|
179 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
180 |
+
return embedding
|
181 |
+
|
182 |
+
|
183 |
+
def zero_module(module):
|
184 |
+
"""
|
185 |
+
Zero out the parameters of a module and return it.
|
186 |
+
"""
|
187 |
+
for p in module.parameters():
|
188 |
+
p.detach().zero_()
|
189 |
+
return module
|
190 |
+
|
191 |
+
|
192 |
+
def scale_module(module, scale):
|
193 |
+
"""
|
194 |
+
Scale the parameters of a module and return it.
|
195 |
+
"""
|
196 |
+
for p in module.parameters():
|
197 |
+
p.detach().mul_(scale)
|
198 |
+
return module
|
199 |
+
|
200 |
+
|
201 |
+
def mean_flat(tensor):
|
202 |
+
"""
|
203 |
+
Take the mean over all non-batch dimensions.
|
204 |
+
"""
|
205 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
206 |
+
|
207 |
+
|
208 |
+
def normalization(channels):
|
209 |
+
"""
|
210 |
+
Make a standard normalization layer.
|
211 |
+
:param channels: number of input channels.
|
212 |
+
:return: an nn.Module for normalization.
|
213 |
+
"""
|
214 |
+
return GroupNorm32(32, channels)
|
215 |
+
|
216 |
+
|
217 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
218 |
+
class SiLU(nn.Module):
|
219 |
+
def forward(self, x):
|
220 |
+
return x * torch.sigmoid(x)
|
221 |
+
|
222 |
+
|
223 |
+
class GroupNorm32(nn.GroupNorm):
|
224 |
+
def forward(self, x):
|
225 |
+
return super().forward(x.float()).type(x.dtype)
|
226 |
+
#return super().forward(x).type(x.dtype)
|
227 |
+
|
228 |
+
def conv_nd(dims, *args, **kwargs):
|
229 |
+
"""
|
230 |
+
Create a 1D, 2D, or 3D convolution module.
|
231 |
+
"""
|
232 |
+
if dims == 1:
|
233 |
+
return nn.Conv1d(*args, **kwargs)
|
234 |
+
elif dims == 2:
|
235 |
+
return nn.Conv2d(*args, **kwargs)
|
236 |
+
elif dims == 3:
|
237 |
+
return nn.Conv3d(*args, **kwargs)
|
238 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
239 |
+
|
240 |
+
|
241 |
+
def linear(*args, **kwargs):
|
242 |
+
"""
|
243 |
+
Create a linear module.
|
244 |
+
"""
|
245 |
+
return nn.Linear(*args, **kwargs)
|
246 |
+
|
247 |
+
|
248 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
249 |
+
"""
|
250 |
+
Create a 1D, 2D, or 3D average pooling module.
|
251 |
+
"""
|
252 |
+
if dims == 1:
|
253 |
+
return nn.AvgPool1d(*args, **kwargs)
|
254 |
+
elif dims == 2:
|
255 |
+
return nn.AvgPool2d(*args, **kwargs)
|
256 |
+
elif dims == 3:
|
257 |
+
return nn.AvgPool3d(*args, **kwargs)
|
258 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
259 |
+
|
260 |
+
|
261 |
+
class HybridConditioner(nn.Module):
|
262 |
+
|
263 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
264 |
+
super().__init__()
|
265 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
266 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
267 |
+
|
268 |
+
def forward(self, c_concat, c_crossattn):
|
269 |
+
c_concat = self.concat_conditioner(c_concat)
|
270 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
271 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
272 |
+
|
273 |
+
|
274 |
+
def noise_like(shape, device, repeat=False):
|
275 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
276 |
+
noise = lambda: torch.randn(shape, device=device)
|
277 |
+
return repeat_noise() if repeat else noise()
|
gligen/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
gligen/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
gligen/ldm/modules/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
gligen/ldm/modules/encoders/__init__.py
ADDED
File without changes
|
gligen/ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
import clip
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
7 |
+
import kornia
|
8 |
+
|
9 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
10 |
+
|
11 |
+
|
12 |
+
class AbstractEncoder(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def encode(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class ClassEmbedder(nn.Module):
|
22 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
23 |
+
super().__init__()
|
24 |
+
self.key = key
|
25 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
26 |
+
|
27 |
+
def forward(self, batch, key=None):
|
28 |
+
if key is None:
|
29 |
+
key = self.key
|
30 |
+
# this is for use in crossattn
|
31 |
+
c = batch[key][:, None]
|
32 |
+
c = self.embedding(c)
|
33 |
+
return c
|
34 |
+
|
35 |
+
|
36 |
+
class TransformerEmbedder(AbstractEncoder):
|
37 |
+
"""Some transformer encoder layers"""
|
38 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
39 |
+
super().__init__()
|
40 |
+
self.device = device
|
41 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
42 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
43 |
+
|
44 |
+
def forward(self, tokens):
|
45 |
+
tokens = tokens.to(self.device) # meh
|
46 |
+
z = self.transformer(tokens, return_embeddings=True)
|
47 |
+
return z
|
48 |
+
|
49 |
+
def encode(self, x):
|
50 |
+
return self(x)
|
51 |
+
|
52 |
+
|
53 |
+
class BERTTokenizer(AbstractEncoder):
|
54 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
55 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
56 |
+
super().__init__()
|
57 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
58 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
59 |
+
self.device = device
|
60 |
+
self.vq_interface = vq_interface
|
61 |
+
self.max_length = max_length
|
62 |
+
|
63 |
+
def forward(self, text):
|
64 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
65 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt",
|
66 |
+
return_offsets_mapping=True)
|
67 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
68 |
+
offset_mapping = batch_encoding["offset_mapping"]
|
69 |
+
return tokens, offset_mapping
|
70 |
+
|
71 |
+
@torch.no_grad()
|
72 |
+
def encode(self, text):
|
73 |
+
tokens = self(text)
|
74 |
+
if not self.vq_interface:
|
75 |
+
return tokens
|
76 |
+
return None, None, [None, None, tokens]
|
77 |
+
|
78 |
+
def decode(self, text):
|
79 |
+
return text
|
80 |
+
|
81 |
+
|
82 |
+
class BERTEmbedder(AbstractEncoder):
|
83 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
84 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
85 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
86 |
+
super().__init__()
|
87 |
+
self.use_tknz_fn = use_tokenizer
|
88 |
+
if self.use_tknz_fn:
|
89 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
90 |
+
self.device = device
|
91 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
92 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
93 |
+
emb_dropout=embedding_dropout)
|
94 |
+
|
95 |
+
def forward(self, text, return_offset_mapping=False):
|
96 |
+
if self.use_tknz_fn:
|
97 |
+
tokens, offset_mapping = self.tknz_fn(text)#.to(self.device)
|
98 |
+
else:
|
99 |
+
assert False
|
100 |
+
tokens = text
|
101 |
+
z = self.transformer(tokens, return_embeddings=True)
|
102 |
+
|
103 |
+
if return_offset_mapping:
|
104 |
+
return z, offset_mapping
|
105 |
+
else:
|
106 |
+
return z
|
107 |
+
|
108 |
+
def encode(self, text, return_offset_mapping=False):
|
109 |
+
# output of length 77
|
110 |
+
return self(text, return_offset_mapping)
|
111 |
+
|
112 |
+
|
113 |
+
class SpatialRescaler(nn.Module):
|
114 |
+
def __init__(self,
|
115 |
+
n_stages=1,
|
116 |
+
method='bilinear',
|
117 |
+
multiplier=0.5,
|
118 |
+
in_channels=3,
|
119 |
+
out_channels=None,
|
120 |
+
bias=False):
|
121 |
+
super().__init__()
|
122 |
+
self.n_stages = n_stages
|
123 |
+
assert self.n_stages >= 0
|
124 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
125 |
+
self.multiplier = multiplier
|
126 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
127 |
+
self.remap_output = out_channels is not None
|
128 |
+
if self.remap_output:
|
129 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
130 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
131 |
+
|
132 |
+
def forward(self,x):
|
133 |
+
for stage in range(self.n_stages):
|
134 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
135 |
+
|
136 |
+
|
137 |
+
if self.remap_output:
|
138 |
+
x = self.channel_mapper(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
def encode(self, x):
|
142 |
+
return self(x)
|
143 |
+
|
144 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
145 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
146 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
147 |
+
super().__init__()
|
148 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
149 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
150 |
+
self.device = device
|
151 |
+
self.max_length = max_length
|
152 |
+
self.freeze()
|
153 |
+
|
154 |
+
def freeze(self):
|
155 |
+
self.transformer = self.transformer.eval()
|
156 |
+
for param in self.parameters():
|
157 |
+
param.requires_grad = False
|
158 |
+
|
159 |
+
def forward(self, text, return_pooler_output=False):
|
160 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
161 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
162 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
163 |
+
outputs = self.transformer(input_ids=tokens)
|
164 |
+
|
165 |
+
z = outputs.last_hidden_state
|
166 |
+
|
167 |
+
if not return_pooler_output:
|
168 |
+
return z
|
169 |
+
else:
|
170 |
+
return z, outputs.pooler_output
|
171 |
+
|
172 |
+
def encode(self, text, return_pooler_output=False):
|
173 |
+
return self(text, return_pooler_output)
|
174 |
+
|
175 |
+
|
176 |
+
class FrozenCLIPTextEmbedder(nn.Module):
|
177 |
+
"""
|
178 |
+
Uses the CLIP transformer encoder for text.
|
179 |
+
"""
|
180 |
+
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
181 |
+
super().__init__()
|
182 |
+
self.model, _ = clip.load(version, jit=False, device="cpu")
|
183 |
+
self.device = device
|
184 |
+
self.max_length = max_length
|
185 |
+
self.n_repeat = n_repeat
|
186 |
+
self.normalize = normalize
|
187 |
+
|
188 |
+
def freeze(self):
|
189 |
+
self.model = self.model.eval()
|
190 |
+
for param in self.parameters():
|
191 |
+
param.requires_grad = False
|
192 |
+
|
193 |
+
def forward(self, text):
|
194 |
+
tokens = clip.tokenize(text).to(self.device)
|
195 |
+
z = self.model.encode_text(tokens)
|
196 |
+
if self.normalize:
|
197 |
+
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
198 |
+
return z
|
199 |
+
|
200 |
+
def encode(self, text):
|
201 |
+
z = self(text)
|
202 |
+
if z.ndim==2:
|
203 |
+
z = z[:, None, :]
|
204 |
+
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
205 |
+
return z
|
206 |
+
|
207 |
+
|
208 |
+
class FrozenClipImageEmbedder(nn.Module):
|
209 |
+
"""
|
210 |
+
Uses the CLIP image encoder.
|
211 |
+
"""
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
model,
|
215 |
+
jit=False,
|
216 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
217 |
+
antialias=False,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
221 |
+
|
222 |
+
self.antialias = antialias
|
223 |
+
|
224 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
225 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
226 |
+
|
227 |
+
def preprocess(self, x):
|
228 |
+
# normalize to [0,1]
|
229 |
+
x = kornia.geometry.resize(x, (224, 224),
|
230 |
+
interpolation='bicubic',align_corners=True,
|
231 |
+
antialias=self.antialias)
|
232 |
+
x = (x + 1.) / 2.
|
233 |
+
# renormalize according to clip
|
234 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
235 |
+
return x
|
236 |
+
|
237 |
+
def forward(self, x):
|
238 |
+
# x is assumed to be in range [-1,1]
|
239 |
+
return self.model.encode_image(self.preprocess(x))
|
240 |
+
|
241 |
+
|
242 |
+
if __name__ == "__main__":
|
243 |
+
from ldm.util import count_params
|
244 |
+
model = FrozenCLIPEmbedder()
|
245 |
+
count_params(model, verbose=True)
|
gligen/ldm/modules/encoders/modules_backup.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
import clip
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
7 |
+
import kornia
|
8 |
+
|
9 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
10 |
+
|
11 |
+
|
12 |
+
class AbstractEncoder(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def encode(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class ClassEmbedder(nn.Module):
|
22 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
23 |
+
super().__init__()
|
24 |
+
self.key = key
|
25 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
26 |
+
|
27 |
+
def forward(self, batch, key=None):
|
28 |
+
if key is None:
|
29 |
+
key = self.key
|
30 |
+
# this is for use in crossattn
|
31 |
+
c = batch[key][:, None]
|
32 |
+
c = self.embedding(c)
|
33 |
+
return c
|
34 |
+
|
35 |
+
|
36 |
+
class TransformerEmbedder(AbstractEncoder):
|
37 |
+
"""Some transformer encoder layers"""
|
38 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
39 |
+
super().__init__()
|
40 |
+
self.device = device
|
41 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
42 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
43 |
+
|
44 |
+
def forward(self, tokens):
|
45 |
+
tokens = tokens.to(self.device) # meh
|
46 |
+
z = self.transformer(tokens, return_embeddings=True)
|
47 |
+
return z
|
48 |
+
|
49 |
+
def encode(self, x):
|
50 |
+
return self(x)
|
51 |
+
|
52 |
+
|
53 |
+
class BERTTokenizer(AbstractEncoder):
|
54 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
55 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
56 |
+
super().__init__()
|
57 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
58 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
59 |
+
self.device = device
|
60 |
+
self.vq_interface = vq_interface
|
61 |
+
self.max_length = max_length
|
62 |
+
|
63 |
+
def forward(self, text):
|
64 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
65 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
66 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
67 |
+
return tokens
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def encode(self, text):
|
71 |
+
tokens = self(text)
|
72 |
+
if not self.vq_interface:
|
73 |
+
return tokens
|
74 |
+
return None, None, [None, None, tokens]
|
75 |
+
|
76 |
+
def decode(self, text):
|
77 |
+
return text
|
78 |
+
|
79 |
+
|
80 |
+
class BERTEmbedder(AbstractEncoder):
|
81 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
82 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
83 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
84 |
+
super().__init__()
|
85 |
+
self.use_tknz_fn = use_tokenizer
|
86 |
+
if self.use_tknz_fn:
|
87 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
88 |
+
self.device = device
|
89 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
90 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
91 |
+
emb_dropout=embedding_dropout)
|
92 |
+
|
93 |
+
def forward(self, text):
|
94 |
+
if self.use_tknz_fn:
|
95 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
96 |
+
else:
|
97 |
+
tokens = text
|
98 |
+
z = self.transformer(tokens, return_embeddings=True)
|
99 |
+
return z
|
100 |
+
|
101 |
+
def encode(self, text):
|
102 |
+
# output of length 77
|
103 |
+
return self(text)
|
104 |
+
|
105 |
+
|
106 |
+
class SpatialRescaler(nn.Module):
|
107 |
+
def __init__(self,
|
108 |
+
n_stages=1,
|
109 |
+
method='bilinear',
|
110 |
+
multiplier=0.5,
|
111 |
+
in_channels=3,
|
112 |
+
out_channels=None,
|
113 |
+
bias=False):
|
114 |
+
super().__init__()
|
115 |
+
self.n_stages = n_stages
|
116 |
+
assert self.n_stages >= 0
|
117 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
118 |
+
self.multiplier = multiplier
|
119 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
120 |
+
self.remap_output = out_channels is not None
|
121 |
+
if self.remap_output:
|
122 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
123 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
124 |
+
|
125 |
+
def forward(self,x):
|
126 |
+
for stage in range(self.n_stages):
|
127 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
128 |
+
|
129 |
+
|
130 |
+
if self.remap_output:
|
131 |
+
x = self.channel_mapper(x)
|
132 |
+
return x
|
133 |
+
|
134 |
+
def encode(self, x):
|
135 |
+
return self(x)
|
136 |
+
|
137 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
138 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
139 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
140 |
+
super().__init__()
|
141 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
142 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
143 |
+
self.device = device
|
144 |
+
self.max_length = max_length
|
145 |
+
self.freeze()
|
146 |
+
|
147 |
+
def freeze(self):
|
148 |
+
self.transformer = self.transformer.eval()
|
149 |
+
for param in self.parameters():
|
150 |
+
param.requires_grad = False
|
151 |
+
|
152 |
+
def forward(self, text):
|
153 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
154 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
155 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
156 |
+
outputs = self.transformer(input_ids=tokens)
|
157 |
+
|
158 |
+
z = outputs.last_hidden_state
|
159 |
+
return z
|
160 |
+
|
161 |
+
def encode(self, text):
|
162 |
+
return self(text)
|
163 |
+
|
164 |
+
|
165 |
+
class FrozenCLIPTextEmbedder(nn.Module):
|
166 |
+
"""
|
167 |
+
Uses the CLIP transformer encoder for text.
|
168 |
+
"""
|
169 |
+
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
170 |
+
super().__init__()
|
171 |
+
self.model, _ = clip.load(version, jit=False, device="cpu")
|
172 |
+
self.device = device
|
173 |
+
self.max_length = max_length
|
174 |
+
self.n_repeat = n_repeat
|
175 |
+
self.normalize = normalize
|
176 |
+
|
177 |
+
def freeze(self):
|
178 |
+
self.model = self.model.eval()
|
179 |
+
for param in self.parameters():
|
180 |
+
param.requires_grad = False
|
181 |
+
|
182 |
+
def forward(self, text):
|
183 |
+
tokens = clip.tokenize(text).to(self.device)
|
184 |
+
z = self.model.encode_text(tokens)
|
185 |
+
if self.normalize:
|
186 |
+
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
187 |
+
return z
|
188 |
+
|
189 |
+
def encode(self, text):
|
190 |
+
z = self(text)
|
191 |
+
if z.ndim==2:
|
192 |
+
z = z[:, None, :]
|
193 |
+
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
194 |
+
return z
|
195 |
+
|
196 |
+
|
197 |
+
class FrozenClipImageEmbedder(nn.Module):
|
198 |
+
"""
|
199 |
+
Uses the CLIP image encoder.
|
200 |
+
"""
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
model,
|
204 |
+
jit=False,
|
205 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
206 |
+
antialias=False,
|
207 |
+
):
|
208 |
+
super().__init__()
|
209 |
+
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
210 |
+
|
211 |
+
self.antialias = antialias
|
212 |
+
|
213 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
214 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
215 |
+
|
216 |
+
def preprocess(self, x):
|
217 |
+
# normalize to [0,1]
|
218 |
+
x = kornia.geometry.resize(x, (224, 224),
|
219 |
+
interpolation='bicubic',align_corners=True,
|
220 |
+
antialias=self.antialias)
|
221 |
+
x = (x + 1.) / 2.
|
222 |
+
# renormalize according to clip
|
223 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
# x is assumed to be in range [-1,1]
|
228 |
+
return self.model.encode_image(self.preprocess(x))
|
229 |
+
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
from ldm.util import count_params
|
233 |
+
model = FrozenCLIPEmbedder()
|
234 |
+
count_params(model, verbose=True)
|
gligen/ldm/modules/image_degradation/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
2 |
+
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
gligen/ldm/modules/image_degradation/bsrgan.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
# --------------------------------------------
|
4 |
+
# Super-Resolution
|
5 |
+
# --------------------------------------------
|
6 |
+
#
|
7 |
+
# Kai Zhang ([email protected])
|
8 |
+
# https://github.com/cszn
|
9 |
+
# From 2019/03--2021/08
|
10 |
+
# --------------------------------------------
|
11 |
+
"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from functools import partial
|
18 |
+
import random
|
19 |
+
from scipy import ndimage
|
20 |
+
import scipy
|
21 |
+
import scipy.stats as ss
|
22 |
+
from scipy.interpolate import interp2d
|
23 |
+
from scipy.linalg import orth
|
24 |
+
import albumentations
|
25 |
+
|
26 |
+
import ldm.modules.image_degradation.utils_image as util
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
if random.random() < 0.5:
|
329 |
+
l1 = wd2 * random.random()
|
330 |
+
l2 = wd2 * random.random()
|
331 |
+
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
332 |
+
else:
|
333 |
+
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
334 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
335 |
+
|
336 |
+
return img
|
337 |
+
|
338 |
+
|
339 |
+
def add_resize(img, sf=4):
|
340 |
+
rnum = np.random.rand()
|
341 |
+
if rnum > 0.8: # up
|
342 |
+
sf1 = random.uniform(1, 2)
|
343 |
+
elif rnum < 0.7: # down
|
344 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
345 |
+
else:
|
346 |
+
sf1 = 1.0
|
347 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
348 |
+
img = np.clip(img, 0.0, 1.0)
|
349 |
+
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
354 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
355 |
+
# rnum = np.random.rand()
|
356 |
+
# if rnum > 0.6: # add color Gaussian noise
|
357 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
358 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
359 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
360 |
+
# else: # add noise
|
361 |
+
# L = noise_level2 / 255.
|
362 |
+
# D = np.diag(np.random.rand(3))
|
363 |
+
# U = orth(np.random.rand(3, 3))
|
364 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
365 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
366 |
+
# img = np.clip(img, 0.0, 1.0)
|
367 |
+
# return img
|
368 |
+
|
369 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
370 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
371 |
+
rnum = np.random.rand()
|
372 |
+
if rnum > 0.6: # add color Gaussian noise
|
373 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
374 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
375 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
376 |
+
else: # add noise
|
377 |
+
L = noise_level2 / 255.
|
378 |
+
D = np.diag(np.random.rand(3))
|
379 |
+
U = orth(np.random.rand(3, 3))
|
380 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
381 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
382 |
+
img = np.clip(img, 0.0, 1.0)
|
383 |
+
return img
|
384 |
+
|
385 |
+
|
386 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
387 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
388 |
+
img = np.clip(img, 0.0, 1.0)
|
389 |
+
rnum = random.random()
|
390 |
+
if rnum > 0.6:
|
391 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
392 |
+
elif rnum < 0.4:
|
393 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
394 |
+
else:
|
395 |
+
L = noise_level2 / 255.
|
396 |
+
D = np.diag(np.random.rand(3))
|
397 |
+
U = orth(np.random.rand(3, 3))
|
398 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
399 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
400 |
+
img = np.clip(img, 0.0, 1.0)
|
401 |
+
return img
|
402 |
+
|
403 |
+
|
404 |
+
def add_Poisson_noise(img):
|
405 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
406 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
407 |
+
if random.random() < 0.5:
|
408 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
409 |
+
else:
|
410 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
411 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
412 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
413 |
+
img += noise_gray[:, :, np.newaxis]
|
414 |
+
img = np.clip(img, 0.0, 1.0)
|
415 |
+
return img
|
416 |
+
|
417 |
+
|
418 |
+
def add_JPEG_noise(img):
|
419 |
+
quality_factor = random.randint(30, 95)
|
420 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
421 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
422 |
+
img = cv2.imdecode(encimg, 1)
|
423 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
424 |
+
return img
|
425 |
+
|
426 |
+
|
427 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
428 |
+
h, w = lq.shape[:2]
|
429 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
430 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
431 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
432 |
+
|
433 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
434 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
435 |
+
return lq, hq
|
436 |
+
|
437 |
+
|
438 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
439 |
+
"""
|
440 |
+
This is the degradation model of BSRGAN from the paper
|
441 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
442 |
+
----------
|
443 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
444 |
+
sf: scale factor
|
445 |
+
isp_model: camera ISP model
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
449 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
450 |
+
"""
|
451 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
452 |
+
sf_ori = sf
|
453 |
+
|
454 |
+
h1, w1 = img.shape[:2]
|
455 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
456 |
+
h, w = img.shape[:2]
|
457 |
+
|
458 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
459 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
460 |
+
|
461 |
+
hq = img.copy()
|
462 |
+
|
463 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
464 |
+
if np.random.rand() < 0.5:
|
465 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
466 |
+
interpolation=random.choice([1, 2, 3]))
|
467 |
+
else:
|
468 |
+
img = util.imresize_np(img, 1 / 2, True)
|
469 |
+
img = np.clip(img, 0.0, 1.0)
|
470 |
+
sf = 2
|
471 |
+
|
472 |
+
shuffle_order = random.sample(range(7), 7)
|
473 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
474 |
+
if idx1 > idx2: # keep downsample3 last
|
475 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
476 |
+
|
477 |
+
for i in shuffle_order:
|
478 |
+
|
479 |
+
if i == 0:
|
480 |
+
img = add_blur(img, sf=sf)
|
481 |
+
|
482 |
+
elif i == 1:
|
483 |
+
img = add_blur(img, sf=sf)
|
484 |
+
|
485 |
+
elif i == 2:
|
486 |
+
a, b = img.shape[1], img.shape[0]
|
487 |
+
# downsample2
|
488 |
+
if random.random() < 0.75:
|
489 |
+
sf1 = random.uniform(1, 2 * sf)
|
490 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
491 |
+
interpolation=random.choice([1, 2, 3]))
|
492 |
+
else:
|
493 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
494 |
+
k_shifted = shift_pixel(k, sf)
|
495 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
496 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
497 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
498 |
+
img = np.clip(img, 0.0, 1.0)
|
499 |
+
|
500 |
+
elif i == 3:
|
501 |
+
# downsample3
|
502 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
503 |
+
img = np.clip(img, 0.0, 1.0)
|
504 |
+
|
505 |
+
elif i == 4:
|
506 |
+
# add Gaussian noise
|
507 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
508 |
+
|
509 |
+
elif i == 5:
|
510 |
+
# add JPEG noise
|
511 |
+
if random.random() < jpeg_prob:
|
512 |
+
img = add_JPEG_noise(img)
|
513 |
+
|
514 |
+
elif i == 6:
|
515 |
+
# add processed camera sensor noise
|
516 |
+
if random.random() < isp_prob and isp_model is not None:
|
517 |
+
with torch.no_grad():
|
518 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
519 |
+
|
520 |
+
# add final JPEG compression noise
|
521 |
+
img = add_JPEG_noise(img)
|
522 |
+
|
523 |
+
# random crop
|
524 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
525 |
+
|
526 |
+
return img, hq
|
527 |
+
|
528 |
+
|
529 |
+
# todo no isp_model?
|
530 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
531 |
+
"""
|
532 |
+
This is the degradation model of BSRGAN from the paper
|
533 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
534 |
+
----------
|
535 |
+
sf: scale factor
|
536 |
+
isp_model: camera ISP model
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
540 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
541 |
+
"""
|
542 |
+
image = util.uint2single(image)
|
543 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
544 |
+
sf_ori = sf
|
545 |
+
|
546 |
+
h1, w1 = image.shape[:2]
|
547 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
548 |
+
h, w = image.shape[:2]
|
549 |
+
|
550 |
+
hq = image.copy()
|
551 |
+
|
552 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
553 |
+
if np.random.rand() < 0.5:
|
554 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
555 |
+
interpolation=random.choice([1, 2, 3]))
|
556 |
+
else:
|
557 |
+
image = util.imresize_np(image, 1 / 2, True)
|
558 |
+
image = np.clip(image, 0.0, 1.0)
|
559 |
+
sf = 2
|
560 |
+
|
561 |
+
shuffle_order = random.sample(range(7), 7)
|
562 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
563 |
+
if idx1 > idx2: # keep downsample3 last
|
564 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
565 |
+
|
566 |
+
for i in shuffle_order:
|
567 |
+
|
568 |
+
if i == 0:
|
569 |
+
image = add_blur(image, sf=sf)
|
570 |
+
|
571 |
+
elif i == 1:
|
572 |
+
image = add_blur(image, sf=sf)
|
573 |
+
|
574 |
+
elif i == 2:
|
575 |
+
a, b = image.shape[1], image.shape[0]
|
576 |
+
# downsample2
|
577 |
+
if random.random() < 0.75:
|
578 |
+
sf1 = random.uniform(1, 2 * sf)
|
579 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
580 |
+
interpolation=random.choice([1, 2, 3]))
|
581 |
+
else:
|
582 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
583 |
+
k_shifted = shift_pixel(k, sf)
|
584 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
585 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
586 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
587 |
+
image = np.clip(image, 0.0, 1.0)
|
588 |
+
|
589 |
+
elif i == 3:
|
590 |
+
# downsample3
|
591 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
592 |
+
image = np.clip(image, 0.0, 1.0)
|
593 |
+
|
594 |
+
elif i == 4:
|
595 |
+
# add Gaussian noise
|
596 |
+
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
597 |
+
|
598 |
+
elif i == 5:
|
599 |
+
# add JPEG noise
|
600 |
+
if random.random() < jpeg_prob:
|
601 |
+
image = add_JPEG_noise(image)
|
602 |
+
|
603 |
+
# elif i == 6:
|
604 |
+
# # add processed camera sensor noise
|
605 |
+
# if random.random() < isp_prob and isp_model is not None:
|
606 |
+
# with torch.no_grad():
|
607 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
608 |
+
|
609 |
+
# add final JPEG compression noise
|
610 |
+
image = add_JPEG_noise(image)
|
611 |
+
image = util.single2uint(image)
|
612 |
+
example = {"image":image}
|
613 |
+
return example
|
614 |
+
|
615 |
+
|
616 |
+
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
617 |
+
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
618 |
+
"""
|
619 |
+
This is an extended degradation model by combining
|
620 |
+
the degradation models of BSRGAN and Real-ESRGAN
|
621 |
+
----------
|
622 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
623 |
+
sf: scale factor
|
624 |
+
use_shuffle: the degradation shuffle
|
625 |
+
use_sharp: sharpening the img
|
626 |
+
Returns
|
627 |
+
-------
|
628 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
629 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
630 |
+
"""
|
631 |
+
|
632 |
+
h1, w1 = img.shape[:2]
|
633 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
634 |
+
h, w = img.shape[:2]
|
635 |
+
|
636 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
637 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
638 |
+
|
639 |
+
if use_sharp:
|
640 |
+
img = add_sharpening(img)
|
641 |
+
hq = img.copy()
|
642 |
+
|
643 |
+
if random.random() < shuffle_prob:
|
644 |
+
shuffle_order = random.sample(range(13), 13)
|
645 |
+
else:
|
646 |
+
shuffle_order = list(range(13))
|
647 |
+
# local shuffle for noise, JPEG is always the last one
|
648 |
+
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
649 |
+
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
650 |
+
|
651 |
+
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
652 |
+
|
653 |
+
for i in shuffle_order:
|
654 |
+
if i == 0:
|
655 |
+
img = add_blur(img, sf=sf)
|
656 |
+
elif i == 1:
|
657 |
+
img = add_resize(img, sf=sf)
|
658 |
+
elif i == 2:
|
659 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
660 |
+
elif i == 3:
|
661 |
+
if random.random() < poisson_prob:
|
662 |
+
img = add_Poisson_noise(img)
|
663 |
+
elif i == 4:
|
664 |
+
if random.random() < speckle_prob:
|
665 |
+
img = add_speckle_noise(img)
|
666 |
+
elif i == 5:
|
667 |
+
if random.random() < isp_prob and isp_model is not None:
|
668 |
+
with torch.no_grad():
|
669 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
670 |
+
elif i == 6:
|
671 |
+
img = add_JPEG_noise(img)
|
672 |
+
elif i == 7:
|
673 |
+
img = add_blur(img, sf=sf)
|
674 |
+
elif i == 8:
|
675 |
+
img = add_resize(img, sf=sf)
|
676 |
+
elif i == 9:
|
677 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
678 |
+
elif i == 10:
|
679 |
+
if random.random() < poisson_prob:
|
680 |
+
img = add_Poisson_noise(img)
|
681 |
+
elif i == 11:
|
682 |
+
if random.random() < speckle_prob:
|
683 |
+
img = add_speckle_noise(img)
|
684 |
+
elif i == 12:
|
685 |
+
if random.random() < isp_prob and isp_model is not None:
|
686 |
+
with torch.no_grad():
|
687 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
688 |
+
else:
|
689 |
+
print('check the shuffle!')
|
690 |
+
|
691 |
+
# resize to desired size
|
692 |
+
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
693 |
+
interpolation=random.choice([1, 2, 3]))
|
694 |
+
|
695 |
+
# add final JPEG compression noise
|
696 |
+
img = add_JPEG_noise(img)
|
697 |
+
|
698 |
+
# random crop
|
699 |
+
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
700 |
+
|
701 |
+
return img, hq
|
702 |
+
|
703 |
+
|
704 |
+
if __name__ == '__main__':
|
705 |
+
print("hey")
|
706 |
+
img = util.imread_uint('utils/test.png', 3)
|
707 |
+
print(img)
|
708 |
+
img = util.uint2single(img)
|
709 |
+
print(img)
|
710 |
+
img = img[:448, :448]
|
711 |
+
h = img.shape[0] // 4
|
712 |
+
print("resizing to", h)
|
713 |
+
sf = 4
|
714 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
715 |
+
for i in range(20):
|
716 |
+
print(i)
|
717 |
+
img_lq = deg_fn(img)
|
718 |
+
print(img_lq)
|
719 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
720 |
+
print(img_lq.shape)
|
721 |
+
print("bicubic", img_lq_bicubic.shape)
|
722 |
+
print(img_hq.shape)
|
723 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
724 |
+
interpolation=0)
|
725 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
726 |
+
interpolation=0)
|
727 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
728 |
+
util.imsave(img_concat, str(i) + '.png')
|
729 |
+
|
730 |
+
|
gligen/ldm/modules/image_degradation/bsrgan_light.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
import random
|
8 |
+
from scipy import ndimage
|
9 |
+
import scipy
|
10 |
+
import scipy.stats as ss
|
11 |
+
from scipy.interpolate import interp2d
|
12 |
+
from scipy.linalg import orth
|
13 |
+
import albumentations
|
14 |
+
|
15 |
+
import ldm.modules.image_degradation.utils_image as util
|
16 |
+
|
17 |
+
"""
|
18 |
+
# --------------------------------------------
|
19 |
+
# Super-Resolution
|
20 |
+
# --------------------------------------------
|
21 |
+
#
|
22 |
+
# Kai Zhang ([email protected])
|
23 |
+
# https://github.com/cszn
|
24 |
+
# From 2019/03--2021/08
|
25 |
+
# --------------------------------------------
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
|
329 |
+
wd2 = wd2/4
|
330 |
+
wd = wd/4
|
331 |
+
|
332 |
+
if random.random() < 0.5:
|
333 |
+
l1 = wd2 * random.random()
|
334 |
+
l2 = wd2 * random.random()
|
335 |
+
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
336 |
+
else:
|
337 |
+
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
338 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
339 |
+
|
340 |
+
return img
|
341 |
+
|
342 |
+
|
343 |
+
def add_resize(img, sf=4):
|
344 |
+
rnum = np.random.rand()
|
345 |
+
if rnum > 0.8: # up
|
346 |
+
sf1 = random.uniform(1, 2)
|
347 |
+
elif rnum < 0.7: # down
|
348 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
349 |
+
else:
|
350 |
+
sf1 = 1.0
|
351 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
352 |
+
img = np.clip(img, 0.0, 1.0)
|
353 |
+
|
354 |
+
return img
|
355 |
+
|
356 |
+
|
357 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
358 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
359 |
+
# rnum = np.random.rand()
|
360 |
+
# if rnum > 0.6: # add color Gaussian noise
|
361 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
362 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
363 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
364 |
+
# else: # add noise
|
365 |
+
# L = noise_level2 / 255.
|
366 |
+
# D = np.diag(np.random.rand(3))
|
367 |
+
# U = orth(np.random.rand(3, 3))
|
368 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
369 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
370 |
+
# img = np.clip(img, 0.0, 1.0)
|
371 |
+
# return img
|
372 |
+
|
373 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
374 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
375 |
+
rnum = np.random.rand()
|
376 |
+
if rnum > 0.6: # add color Gaussian noise
|
377 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
378 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
379 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
380 |
+
else: # add noise
|
381 |
+
L = noise_level2 / 255.
|
382 |
+
D = np.diag(np.random.rand(3))
|
383 |
+
U = orth(np.random.rand(3, 3))
|
384 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
385 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
386 |
+
img = np.clip(img, 0.0, 1.0)
|
387 |
+
return img
|
388 |
+
|
389 |
+
|
390 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
391 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
392 |
+
img = np.clip(img, 0.0, 1.0)
|
393 |
+
rnum = random.random()
|
394 |
+
if rnum > 0.6:
|
395 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
396 |
+
elif rnum < 0.4:
|
397 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
398 |
+
else:
|
399 |
+
L = noise_level2 / 255.
|
400 |
+
D = np.diag(np.random.rand(3))
|
401 |
+
U = orth(np.random.rand(3, 3))
|
402 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
403 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
404 |
+
img = np.clip(img, 0.0, 1.0)
|
405 |
+
return img
|
406 |
+
|
407 |
+
|
408 |
+
def add_Poisson_noise(img):
|
409 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
410 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
411 |
+
if random.random() < 0.5:
|
412 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
413 |
+
else:
|
414 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
415 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
416 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
417 |
+
img += noise_gray[:, :, np.newaxis]
|
418 |
+
img = np.clip(img, 0.0, 1.0)
|
419 |
+
return img
|
420 |
+
|
421 |
+
|
422 |
+
def add_JPEG_noise(img):
|
423 |
+
quality_factor = random.randint(80, 95)
|
424 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
425 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
426 |
+
img = cv2.imdecode(encimg, 1)
|
427 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
428 |
+
return img
|
429 |
+
|
430 |
+
|
431 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
432 |
+
h, w = lq.shape[:2]
|
433 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
434 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
435 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
436 |
+
|
437 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
438 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
439 |
+
return lq, hq
|
440 |
+
|
441 |
+
|
442 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
443 |
+
"""
|
444 |
+
This is the degradation model of BSRGAN from the paper
|
445 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
446 |
+
----------
|
447 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
448 |
+
sf: scale factor
|
449 |
+
isp_model: camera ISP model
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
453 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
454 |
+
"""
|
455 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
456 |
+
sf_ori = sf
|
457 |
+
|
458 |
+
h1, w1 = img.shape[:2]
|
459 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
460 |
+
h, w = img.shape[:2]
|
461 |
+
|
462 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
463 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
464 |
+
|
465 |
+
hq = img.copy()
|
466 |
+
|
467 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
468 |
+
if np.random.rand() < 0.5:
|
469 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
470 |
+
interpolation=random.choice([1, 2, 3]))
|
471 |
+
else:
|
472 |
+
img = util.imresize_np(img, 1 / 2, True)
|
473 |
+
img = np.clip(img, 0.0, 1.0)
|
474 |
+
sf = 2
|
475 |
+
|
476 |
+
shuffle_order = random.sample(range(7), 7)
|
477 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
478 |
+
if idx1 > idx2: # keep downsample3 last
|
479 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
480 |
+
|
481 |
+
for i in shuffle_order:
|
482 |
+
|
483 |
+
if i == 0:
|
484 |
+
img = add_blur(img, sf=sf)
|
485 |
+
|
486 |
+
elif i == 1:
|
487 |
+
img = add_blur(img, sf=sf)
|
488 |
+
|
489 |
+
elif i == 2:
|
490 |
+
a, b = img.shape[1], img.shape[0]
|
491 |
+
# downsample2
|
492 |
+
if random.random() < 0.75:
|
493 |
+
sf1 = random.uniform(1, 2 * sf)
|
494 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
495 |
+
interpolation=random.choice([1, 2, 3]))
|
496 |
+
else:
|
497 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
498 |
+
k_shifted = shift_pixel(k, sf)
|
499 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
500 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
501 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
502 |
+
img = np.clip(img, 0.0, 1.0)
|
503 |
+
|
504 |
+
elif i == 3:
|
505 |
+
# downsample3
|
506 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
507 |
+
img = np.clip(img, 0.0, 1.0)
|
508 |
+
|
509 |
+
elif i == 4:
|
510 |
+
# add Gaussian noise
|
511 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
512 |
+
|
513 |
+
elif i == 5:
|
514 |
+
# add JPEG noise
|
515 |
+
if random.random() < jpeg_prob:
|
516 |
+
img = add_JPEG_noise(img)
|
517 |
+
|
518 |
+
elif i == 6:
|
519 |
+
# add processed camera sensor noise
|
520 |
+
if random.random() < isp_prob and isp_model is not None:
|
521 |
+
with torch.no_grad():
|
522 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
523 |
+
|
524 |
+
# add final JPEG compression noise
|
525 |
+
img = add_JPEG_noise(img)
|
526 |
+
|
527 |
+
# random crop
|
528 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
529 |
+
|
530 |
+
return img, hq
|
531 |
+
|
532 |
+
|
533 |
+
# todo no isp_model?
|
534 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
535 |
+
"""
|
536 |
+
This is the degradation model of BSRGAN from the paper
|
537 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
538 |
+
----------
|
539 |
+
sf: scale factor
|
540 |
+
isp_model: camera ISP model
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
544 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
545 |
+
"""
|
546 |
+
image = util.uint2single(image)
|
547 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
548 |
+
sf_ori = sf
|
549 |
+
|
550 |
+
h1, w1 = image.shape[:2]
|
551 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
552 |
+
h, w = image.shape[:2]
|
553 |
+
|
554 |
+
hq = image.copy()
|
555 |
+
|
556 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
557 |
+
if np.random.rand() < 0.5:
|
558 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
559 |
+
interpolation=random.choice([1, 2, 3]))
|
560 |
+
else:
|
561 |
+
image = util.imresize_np(image, 1 / 2, True)
|
562 |
+
image = np.clip(image, 0.0, 1.0)
|
563 |
+
sf = 2
|
564 |
+
|
565 |
+
shuffle_order = random.sample(range(7), 7)
|
566 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
567 |
+
if idx1 > idx2: # keep downsample3 last
|
568 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
569 |
+
|
570 |
+
for i in shuffle_order:
|
571 |
+
|
572 |
+
if i == 0:
|
573 |
+
image = add_blur(image, sf=sf)
|
574 |
+
|
575 |
+
# elif i == 1:
|
576 |
+
# image = add_blur(image, sf=sf)
|
577 |
+
|
578 |
+
if i == 0:
|
579 |
+
pass
|
580 |
+
|
581 |
+
elif i == 2:
|
582 |
+
a, b = image.shape[1], image.shape[0]
|
583 |
+
# downsample2
|
584 |
+
if random.random() < 0.8:
|
585 |
+
sf1 = random.uniform(1, 2 * sf)
|
586 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
587 |
+
interpolation=random.choice([1, 2, 3]))
|
588 |
+
else:
|
589 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
590 |
+
k_shifted = shift_pixel(k, sf)
|
591 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
592 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
593 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
594 |
+
|
595 |
+
image = np.clip(image, 0.0, 1.0)
|
596 |
+
|
597 |
+
elif i == 3:
|
598 |
+
# downsample3
|
599 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
600 |
+
image = np.clip(image, 0.0, 1.0)
|
601 |
+
|
602 |
+
elif i == 4:
|
603 |
+
# add Gaussian noise
|
604 |
+
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
605 |
+
|
606 |
+
elif i == 5:
|
607 |
+
# add JPEG noise
|
608 |
+
if random.random() < jpeg_prob:
|
609 |
+
image = add_JPEG_noise(image)
|
610 |
+
#
|
611 |
+
# elif i == 6:
|
612 |
+
# # add processed camera sensor noise
|
613 |
+
# if random.random() < isp_prob and isp_model is not None:
|
614 |
+
# with torch.no_grad():
|
615 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
616 |
+
|
617 |
+
# add final JPEG compression noise
|
618 |
+
image = add_JPEG_noise(image)
|
619 |
+
image = util.single2uint(image)
|
620 |
+
example = {"image": image}
|
621 |
+
return example
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
if __name__ == '__main__':
|
627 |
+
print("hey")
|
628 |
+
img = util.imread_uint('utils/test.png', 3)
|
629 |
+
img = img[:448, :448]
|
630 |
+
h = img.shape[0] // 4
|
631 |
+
print("resizing to", h)
|
632 |
+
sf = 4
|
633 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
634 |
+
for i in range(20):
|
635 |
+
print(i)
|
636 |
+
img_hq = img
|
637 |
+
img_lq = deg_fn(img)["image"]
|
638 |
+
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
639 |
+
print(img_lq)
|
640 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
641 |
+
print(img_lq.shape)
|
642 |
+
print("bicubic", img_lq_bicubic.shape)
|
643 |
+
print(img_hq.shape)
|
644 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
645 |
+
interpolation=0)
|
646 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
647 |
+
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
648 |
+
interpolation=0)
|
649 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
650 |
+
util.imsave(img_concat, str(i) + '.png')
|
gligen/ldm/modules/image_degradation/utils_image.py
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
from torchvision.utils import make_grid
|
8 |
+
from datetime import datetime
|
9 |
+
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
10 |
+
|
11 |
+
|
12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
13 |
+
|
14 |
+
|
15 |
+
'''
|
16 |
+
# --------------------------------------------
|
17 |
+
# Kai Zhang (github: https://github.com/cszn)
|
18 |
+
# 03/Mar/2019
|
19 |
+
# --------------------------------------------
|
20 |
+
# https://github.com/twhui/SRGAN-pyTorch
|
21 |
+
# https://github.com/xinntao/BasicSR
|
22 |
+
# --------------------------------------------
|
23 |
+
'''
|
24 |
+
|
25 |
+
|
26 |
+
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
27 |
+
|
28 |
+
|
29 |
+
def is_image_file(filename):
|
30 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
31 |
+
|
32 |
+
|
33 |
+
def get_timestamp():
|
34 |
+
return datetime.now().strftime('%y%m%d-%H%M%S')
|
35 |
+
|
36 |
+
|
37 |
+
def imshow(x, title=None, cbar=False, figsize=None):
|
38 |
+
plt.figure(figsize=figsize)
|
39 |
+
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
40 |
+
if title:
|
41 |
+
plt.title(title)
|
42 |
+
if cbar:
|
43 |
+
plt.colorbar()
|
44 |
+
plt.show()
|
45 |
+
|
46 |
+
|
47 |
+
def surf(Z, cmap='rainbow', figsize=None):
|
48 |
+
plt.figure(figsize=figsize)
|
49 |
+
ax3 = plt.axes(projection='3d')
|
50 |
+
|
51 |
+
w, h = Z.shape[:2]
|
52 |
+
xx = np.arange(0,w,1)
|
53 |
+
yy = np.arange(0,h,1)
|
54 |
+
X, Y = np.meshgrid(xx, yy)
|
55 |
+
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
56 |
+
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
57 |
+
plt.show()
|
58 |
+
|
59 |
+
|
60 |
+
'''
|
61 |
+
# --------------------------------------------
|
62 |
+
# get image pathes
|
63 |
+
# --------------------------------------------
|
64 |
+
'''
|
65 |
+
|
66 |
+
|
67 |
+
def get_image_paths(dataroot):
|
68 |
+
paths = None # return None if dataroot is None
|
69 |
+
if dataroot is not None:
|
70 |
+
paths = sorted(_get_paths_from_images(dataroot))
|
71 |
+
return paths
|
72 |
+
|
73 |
+
|
74 |
+
def _get_paths_from_images(path):
|
75 |
+
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
76 |
+
images = []
|
77 |
+
for dirpath, _, fnames in sorted(os.walk(path)):
|
78 |
+
for fname in sorted(fnames):
|
79 |
+
if is_image_file(fname):
|
80 |
+
img_path = os.path.join(dirpath, fname)
|
81 |
+
images.append(img_path)
|
82 |
+
assert images, '{:s} has no valid image file'.format(path)
|
83 |
+
return images
|
84 |
+
|
85 |
+
|
86 |
+
'''
|
87 |
+
# --------------------------------------------
|
88 |
+
# split large images into small images
|
89 |
+
# --------------------------------------------
|
90 |
+
'''
|
91 |
+
|
92 |
+
|
93 |
+
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
94 |
+
w, h = img.shape[:2]
|
95 |
+
patches = []
|
96 |
+
if w > p_max and h > p_max:
|
97 |
+
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
98 |
+
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
99 |
+
w1.append(w-p_size)
|
100 |
+
h1.append(h-p_size)
|
101 |
+
# print(w1)
|
102 |
+
# print(h1)
|
103 |
+
for i in w1:
|
104 |
+
for j in h1:
|
105 |
+
patches.append(img[i:i+p_size, j:j+p_size,:])
|
106 |
+
else:
|
107 |
+
patches.append(img)
|
108 |
+
|
109 |
+
return patches
|
110 |
+
|
111 |
+
|
112 |
+
def imssave(imgs, img_path):
|
113 |
+
"""
|
114 |
+
imgs: list, N images of size WxHxC
|
115 |
+
"""
|
116 |
+
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
117 |
+
|
118 |
+
for i, img in enumerate(imgs):
|
119 |
+
if img.ndim == 3:
|
120 |
+
img = img[:, :, [2, 1, 0]]
|
121 |
+
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
122 |
+
cv2.imwrite(new_path, img)
|
123 |
+
|
124 |
+
|
125 |
+
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
126 |
+
"""
|
127 |
+
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
128 |
+
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
129 |
+
will be splitted.
|
130 |
+
Args:
|
131 |
+
original_dataroot:
|
132 |
+
taget_dataroot:
|
133 |
+
p_size: size of small images
|
134 |
+
p_overlap: patch size in training is a good choice
|
135 |
+
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
136 |
+
"""
|
137 |
+
paths = get_image_paths(original_dataroot)
|
138 |
+
for img_path in paths:
|
139 |
+
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
140 |
+
img = imread_uint(img_path, n_channels=n_channels)
|
141 |
+
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
142 |
+
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
143 |
+
#if original_dataroot == taget_dataroot:
|
144 |
+
#del img_path
|
145 |
+
|
146 |
+
'''
|
147 |
+
# --------------------------------------------
|
148 |
+
# makedir
|
149 |
+
# --------------------------------------------
|
150 |
+
'''
|
151 |
+
|
152 |
+
|
153 |
+
def mkdir(path):
|
154 |
+
if not os.path.exists(path):
|
155 |
+
os.makedirs(path)
|
156 |
+
|
157 |
+
|
158 |
+
def mkdirs(paths):
|
159 |
+
if isinstance(paths, str):
|
160 |
+
mkdir(paths)
|
161 |
+
else:
|
162 |
+
for path in paths:
|
163 |
+
mkdir(path)
|
164 |
+
|
165 |
+
|
166 |
+
def mkdir_and_rename(path):
|
167 |
+
if os.path.exists(path):
|
168 |
+
new_name = path + '_archived_' + get_timestamp()
|
169 |
+
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
170 |
+
os.rename(path, new_name)
|
171 |
+
os.makedirs(path)
|
172 |
+
|
173 |
+
|
174 |
+
'''
|
175 |
+
# --------------------------------------------
|
176 |
+
# read image from path
|
177 |
+
# opencv is fast, but read BGR numpy image
|
178 |
+
# --------------------------------------------
|
179 |
+
'''
|
180 |
+
|
181 |
+
|
182 |
+
# --------------------------------------------
|
183 |
+
# get uint8 image of size HxWxn_channles (RGB)
|
184 |
+
# --------------------------------------------
|
185 |
+
def imread_uint(path, n_channels=3):
|
186 |
+
# input: path
|
187 |
+
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
188 |
+
if n_channels == 1:
|
189 |
+
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
190 |
+
img = np.expand_dims(img, axis=2) # HxWx1
|
191 |
+
elif n_channels == 3:
|
192 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
193 |
+
if img.ndim == 2:
|
194 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
195 |
+
else:
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
197 |
+
return img
|
198 |
+
|
199 |
+
|
200 |
+
# --------------------------------------------
|
201 |
+
# matlab's imwrite
|
202 |
+
# --------------------------------------------
|
203 |
+
def imsave(img, img_path):
|
204 |
+
img = np.squeeze(img)
|
205 |
+
if img.ndim == 3:
|
206 |
+
img = img[:, :, [2, 1, 0]]
|
207 |
+
cv2.imwrite(img_path, img)
|
208 |
+
|
209 |
+
def imwrite(img, img_path):
|
210 |
+
img = np.squeeze(img)
|
211 |
+
if img.ndim == 3:
|
212 |
+
img = img[:, :, [2, 1, 0]]
|
213 |
+
cv2.imwrite(img_path, img)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# --------------------------------------------
|
218 |
+
# get single image of size HxWxn_channles (BGR)
|
219 |
+
# --------------------------------------------
|
220 |
+
def read_img(path):
|
221 |
+
# read image by cv2
|
222 |
+
# return: Numpy float32, HWC, BGR, [0,1]
|
223 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
224 |
+
img = img.astype(np.float32) / 255.
|
225 |
+
if img.ndim == 2:
|
226 |
+
img = np.expand_dims(img, axis=2)
|
227 |
+
# some images have 4 channels
|
228 |
+
if img.shape[2] > 3:
|
229 |
+
img = img[:, :, :3]
|
230 |
+
return img
|
231 |
+
|
232 |
+
|
233 |
+
'''
|
234 |
+
# --------------------------------------------
|
235 |
+
# image format conversion
|
236 |
+
# --------------------------------------------
|
237 |
+
# numpy(single) <---> numpy(unit)
|
238 |
+
# numpy(single) <---> tensor
|
239 |
+
# numpy(unit) <---> tensor
|
240 |
+
# --------------------------------------------
|
241 |
+
'''
|
242 |
+
|
243 |
+
|
244 |
+
# --------------------------------------------
|
245 |
+
# numpy(single) [0, 1] <---> numpy(unit)
|
246 |
+
# --------------------------------------------
|
247 |
+
|
248 |
+
|
249 |
+
def uint2single(img):
|
250 |
+
|
251 |
+
return np.float32(img/255.)
|
252 |
+
|
253 |
+
|
254 |
+
def single2uint(img):
|
255 |
+
|
256 |
+
return np.uint8((img.clip(0, 1)*255.).round())
|
257 |
+
|
258 |
+
|
259 |
+
def uint162single(img):
|
260 |
+
|
261 |
+
return np.float32(img/65535.)
|
262 |
+
|
263 |
+
|
264 |
+
def single2uint16(img):
|
265 |
+
|
266 |
+
return np.uint16((img.clip(0, 1)*65535.).round())
|
267 |
+
|
268 |
+
|
269 |
+
# --------------------------------------------
|
270 |
+
# numpy(unit) (HxWxC or HxW) <---> tensor
|
271 |
+
# --------------------------------------------
|
272 |
+
|
273 |
+
|
274 |
+
# convert uint to 4-dimensional torch tensor
|
275 |
+
def uint2tensor4(img):
|
276 |
+
if img.ndim == 2:
|
277 |
+
img = np.expand_dims(img, axis=2)
|
278 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
279 |
+
|
280 |
+
|
281 |
+
# convert uint to 3-dimensional torch tensor
|
282 |
+
def uint2tensor3(img):
|
283 |
+
if img.ndim == 2:
|
284 |
+
img = np.expand_dims(img, axis=2)
|
285 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
286 |
+
|
287 |
+
|
288 |
+
# convert 2/3/4-dimensional torch tensor to uint
|
289 |
+
def tensor2uint(img):
|
290 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
291 |
+
if img.ndim == 3:
|
292 |
+
img = np.transpose(img, (1, 2, 0))
|
293 |
+
return np.uint8((img*255.0).round())
|
294 |
+
|
295 |
+
|
296 |
+
# --------------------------------------------
|
297 |
+
# numpy(single) (HxWxC) <---> tensor
|
298 |
+
# --------------------------------------------
|
299 |
+
|
300 |
+
|
301 |
+
# convert single (HxWxC) to 3-dimensional torch tensor
|
302 |
+
def single2tensor3(img):
|
303 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
304 |
+
|
305 |
+
|
306 |
+
# convert single (HxWxC) to 4-dimensional torch tensor
|
307 |
+
def single2tensor4(img):
|
308 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
309 |
+
|
310 |
+
|
311 |
+
# convert torch tensor to single
|
312 |
+
def tensor2single(img):
|
313 |
+
img = img.data.squeeze().float().cpu().numpy()
|
314 |
+
if img.ndim == 3:
|
315 |
+
img = np.transpose(img, (1, 2, 0))
|
316 |
+
|
317 |
+
return img
|
318 |
+
|
319 |
+
# convert torch tensor to single
|
320 |
+
def tensor2single3(img):
|
321 |
+
img = img.data.squeeze().float().cpu().numpy()
|
322 |
+
if img.ndim == 3:
|
323 |
+
img = np.transpose(img, (1, 2, 0))
|
324 |
+
elif img.ndim == 2:
|
325 |
+
img = np.expand_dims(img, axis=2)
|
326 |
+
return img
|
327 |
+
|
328 |
+
|
329 |
+
def single2tensor5(img):
|
330 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
331 |
+
|
332 |
+
|
333 |
+
def single32tensor5(img):
|
334 |
+
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
335 |
+
|
336 |
+
|
337 |
+
def single42tensor4(img):
|
338 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
339 |
+
|
340 |
+
|
341 |
+
# from skimage.io import imread, imsave
|
342 |
+
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
343 |
+
'''
|
344 |
+
Converts a torch Tensor into an image Numpy array of BGR channel order
|
345 |
+
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
346 |
+
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
347 |
+
'''
|
348 |
+
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
349 |
+
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
350 |
+
n_dim = tensor.dim()
|
351 |
+
if n_dim == 4:
|
352 |
+
n_img = len(tensor)
|
353 |
+
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
354 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
355 |
+
elif n_dim == 3:
|
356 |
+
img_np = tensor.numpy()
|
357 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
358 |
+
elif n_dim == 2:
|
359 |
+
img_np = tensor.numpy()
|
360 |
+
else:
|
361 |
+
raise TypeError(
|
362 |
+
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
363 |
+
if out_type == np.uint8:
|
364 |
+
img_np = (img_np * 255.0).round()
|
365 |
+
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
366 |
+
return img_np.astype(out_type)
|
367 |
+
|
368 |
+
|
369 |
+
'''
|
370 |
+
# --------------------------------------------
|
371 |
+
# Augmentation, flipe and/or rotate
|
372 |
+
# --------------------------------------------
|
373 |
+
# The following two are enough.
|
374 |
+
# (1) augmet_img: numpy image of WxHxC or WxH
|
375 |
+
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
376 |
+
# --------------------------------------------
|
377 |
+
'''
|
378 |
+
|
379 |
+
|
380 |
+
def augment_img(img, mode=0):
|
381 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
382 |
+
'''
|
383 |
+
if mode == 0:
|
384 |
+
return img
|
385 |
+
elif mode == 1:
|
386 |
+
return np.flipud(np.rot90(img))
|
387 |
+
elif mode == 2:
|
388 |
+
return np.flipud(img)
|
389 |
+
elif mode == 3:
|
390 |
+
return np.rot90(img, k=3)
|
391 |
+
elif mode == 4:
|
392 |
+
return np.flipud(np.rot90(img, k=2))
|
393 |
+
elif mode == 5:
|
394 |
+
return np.rot90(img)
|
395 |
+
elif mode == 6:
|
396 |
+
return np.rot90(img, k=2)
|
397 |
+
elif mode == 7:
|
398 |
+
return np.flipud(np.rot90(img, k=3))
|
399 |
+
|
400 |
+
|
401 |
+
def augment_img_tensor4(img, mode=0):
|
402 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
403 |
+
'''
|
404 |
+
if mode == 0:
|
405 |
+
return img
|
406 |
+
elif mode == 1:
|
407 |
+
return img.rot90(1, [2, 3]).flip([2])
|
408 |
+
elif mode == 2:
|
409 |
+
return img.flip([2])
|
410 |
+
elif mode == 3:
|
411 |
+
return img.rot90(3, [2, 3])
|
412 |
+
elif mode == 4:
|
413 |
+
return img.rot90(2, [2, 3]).flip([2])
|
414 |
+
elif mode == 5:
|
415 |
+
return img.rot90(1, [2, 3])
|
416 |
+
elif mode == 6:
|
417 |
+
return img.rot90(2, [2, 3])
|
418 |
+
elif mode == 7:
|
419 |
+
return img.rot90(3, [2, 3]).flip([2])
|
420 |
+
|
421 |
+
|
422 |
+
def augment_img_tensor(img, mode=0):
|
423 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
424 |
+
'''
|
425 |
+
img_size = img.size()
|
426 |
+
img_np = img.data.cpu().numpy()
|
427 |
+
if len(img_size) == 3:
|
428 |
+
img_np = np.transpose(img_np, (1, 2, 0))
|
429 |
+
elif len(img_size) == 4:
|
430 |
+
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
431 |
+
img_np = augment_img(img_np, mode=mode)
|
432 |
+
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
433 |
+
if len(img_size) == 3:
|
434 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
435 |
+
elif len(img_size) == 4:
|
436 |
+
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
437 |
+
|
438 |
+
return img_tensor.type_as(img)
|
439 |
+
|
440 |
+
|
441 |
+
def augment_img_np3(img, mode=0):
|
442 |
+
if mode == 0:
|
443 |
+
return img
|
444 |
+
elif mode == 1:
|
445 |
+
return img.transpose(1, 0, 2)
|
446 |
+
elif mode == 2:
|
447 |
+
return img[::-1, :, :]
|
448 |
+
elif mode == 3:
|
449 |
+
img = img[::-1, :, :]
|
450 |
+
img = img.transpose(1, 0, 2)
|
451 |
+
return img
|
452 |
+
elif mode == 4:
|
453 |
+
return img[:, ::-1, :]
|
454 |
+
elif mode == 5:
|
455 |
+
img = img[:, ::-1, :]
|
456 |
+
img = img.transpose(1, 0, 2)
|
457 |
+
return img
|
458 |
+
elif mode == 6:
|
459 |
+
img = img[:, ::-1, :]
|
460 |
+
img = img[::-1, :, :]
|
461 |
+
return img
|
462 |
+
elif mode == 7:
|
463 |
+
img = img[:, ::-1, :]
|
464 |
+
img = img[::-1, :, :]
|
465 |
+
img = img.transpose(1, 0, 2)
|
466 |
+
return img
|
467 |
+
|
468 |
+
|
469 |
+
def augment_imgs(img_list, hflip=True, rot=True):
|
470 |
+
# horizontal flip OR rotate
|
471 |
+
hflip = hflip and random.random() < 0.5
|
472 |
+
vflip = rot and random.random() < 0.5
|
473 |
+
rot90 = rot and random.random() < 0.5
|
474 |
+
|
475 |
+
def _augment(img):
|
476 |
+
if hflip:
|
477 |
+
img = img[:, ::-1, :]
|
478 |
+
if vflip:
|
479 |
+
img = img[::-1, :, :]
|
480 |
+
if rot90:
|
481 |
+
img = img.transpose(1, 0, 2)
|
482 |
+
return img
|
483 |
+
|
484 |
+
return [_augment(img) for img in img_list]
|
485 |
+
|
486 |
+
|
487 |
+
'''
|
488 |
+
# --------------------------------------------
|
489 |
+
# modcrop and shave
|
490 |
+
# --------------------------------------------
|
491 |
+
'''
|
492 |
+
|
493 |
+
|
494 |
+
def modcrop(img_in, scale):
|
495 |
+
# img_in: Numpy, HWC or HW
|
496 |
+
img = np.copy(img_in)
|
497 |
+
if img.ndim == 2:
|
498 |
+
H, W = img.shape
|
499 |
+
H_r, W_r = H % scale, W % scale
|
500 |
+
img = img[:H - H_r, :W - W_r]
|
501 |
+
elif img.ndim == 3:
|
502 |
+
H, W, C = img.shape
|
503 |
+
H_r, W_r = H % scale, W % scale
|
504 |
+
img = img[:H - H_r, :W - W_r, :]
|
505 |
+
else:
|
506 |
+
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
507 |
+
return img
|
508 |
+
|
509 |
+
|
510 |
+
def shave(img_in, border=0):
|
511 |
+
# img_in: Numpy, HWC or HW
|
512 |
+
img = np.copy(img_in)
|
513 |
+
h, w = img.shape[:2]
|
514 |
+
img = img[border:h-border, border:w-border]
|
515 |
+
return img
|
516 |
+
|
517 |
+
|
518 |
+
'''
|
519 |
+
# --------------------------------------------
|
520 |
+
# image processing process on numpy image
|
521 |
+
# channel_convert(in_c, tar_type, img_list):
|
522 |
+
# rgb2ycbcr(img, only_y=True):
|
523 |
+
# bgr2ycbcr(img, only_y=True):
|
524 |
+
# ycbcr2rgb(img):
|
525 |
+
# --------------------------------------------
|
526 |
+
'''
|
527 |
+
|
528 |
+
|
529 |
+
def rgb2ycbcr(img, only_y=True):
|
530 |
+
'''same as matlab rgb2ycbcr
|
531 |
+
only_y: only return Y channel
|
532 |
+
Input:
|
533 |
+
uint8, [0, 255]
|
534 |
+
float, [0, 1]
|
535 |
+
'''
|
536 |
+
in_img_type = img.dtype
|
537 |
+
img.astype(np.float32)
|
538 |
+
if in_img_type != np.uint8:
|
539 |
+
img *= 255.
|
540 |
+
# convert
|
541 |
+
if only_y:
|
542 |
+
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
543 |
+
else:
|
544 |
+
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
545 |
+
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
546 |
+
if in_img_type == np.uint8:
|
547 |
+
rlt = rlt.round()
|
548 |
+
else:
|
549 |
+
rlt /= 255.
|
550 |
+
return rlt.astype(in_img_type)
|
551 |
+
|
552 |
+
|
553 |
+
def ycbcr2rgb(img):
|
554 |
+
'''same as matlab ycbcr2rgb
|
555 |
+
Input:
|
556 |
+
uint8, [0, 255]
|
557 |
+
float, [0, 1]
|
558 |
+
'''
|
559 |
+
in_img_type = img.dtype
|
560 |
+
img.astype(np.float32)
|
561 |
+
if in_img_type != np.uint8:
|
562 |
+
img *= 255.
|
563 |
+
# convert
|
564 |
+
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
565 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
566 |
+
if in_img_type == np.uint8:
|
567 |
+
rlt = rlt.round()
|
568 |
+
else:
|
569 |
+
rlt /= 255.
|
570 |
+
return rlt.astype(in_img_type)
|
571 |
+
|
572 |
+
|
573 |
+
def bgr2ycbcr(img, only_y=True):
|
574 |
+
'''bgr version of rgb2ycbcr
|
575 |
+
only_y: only return Y channel
|
576 |
+
Input:
|
577 |
+
uint8, [0, 255]
|
578 |
+
float, [0, 1]
|
579 |
+
'''
|
580 |
+
in_img_type = img.dtype
|
581 |
+
img.astype(np.float32)
|
582 |
+
if in_img_type != np.uint8:
|
583 |
+
img *= 255.
|
584 |
+
# convert
|
585 |
+
if only_y:
|
586 |
+
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
587 |
+
else:
|
588 |
+
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
589 |
+
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
590 |
+
if in_img_type == np.uint8:
|
591 |
+
rlt = rlt.round()
|
592 |
+
else:
|
593 |
+
rlt /= 255.
|
594 |
+
return rlt.astype(in_img_type)
|
595 |
+
|
596 |
+
|
597 |
+
def channel_convert(in_c, tar_type, img_list):
|
598 |
+
# conversion among BGR, gray and y
|
599 |
+
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
600 |
+
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
601 |
+
return [np.expand_dims(img, axis=2) for img in gray_list]
|
602 |
+
elif in_c == 3 and tar_type == 'y': # BGR to y
|
603 |
+
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
604 |
+
return [np.expand_dims(img, axis=2) for img in y_list]
|
605 |
+
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
606 |
+
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
607 |
+
else:
|
608 |
+
return img_list
|
609 |
+
|
610 |
+
|
611 |
+
'''
|
612 |
+
# --------------------------------------------
|
613 |
+
# metric, PSNR and SSIM
|
614 |
+
# --------------------------------------------
|
615 |
+
'''
|
616 |
+
|
617 |
+
|
618 |
+
# --------------------------------------------
|
619 |
+
# PSNR
|
620 |
+
# --------------------------------------------
|
621 |
+
def calculate_psnr(img1, img2, border=0):
|
622 |
+
# img1 and img2 have range [0, 255]
|
623 |
+
#img1 = img1.squeeze()
|
624 |
+
#img2 = img2.squeeze()
|
625 |
+
if not img1.shape == img2.shape:
|
626 |
+
raise ValueError('Input images must have the same dimensions.')
|
627 |
+
h, w = img1.shape[:2]
|
628 |
+
img1 = img1[border:h-border, border:w-border]
|
629 |
+
img2 = img2[border:h-border, border:w-border]
|
630 |
+
|
631 |
+
img1 = img1.astype(np.float64)
|
632 |
+
img2 = img2.astype(np.float64)
|
633 |
+
mse = np.mean((img1 - img2)**2)
|
634 |
+
if mse == 0:
|
635 |
+
return float('inf')
|
636 |
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
637 |
+
|
638 |
+
|
639 |
+
# --------------------------------------------
|
640 |
+
# SSIM
|
641 |
+
# --------------------------------------------
|
642 |
+
def calculate_ssim(img1, img2, border=0):
|
643 |
+
'''calculate SSIM
|
644 |
+
the same outputs as MATLAB's
|
645 |
+
img1, img2: [0, 255]
|
646 |
+
'''
|
647 |
+
#img1 = img1.squeeze()
|
648 |
+
#img2 = img2.squeeze()
|
649 |
+
if not img1.shape == img2.shape:
|
650 |
+
raise ValueError('Input images must have the same dimensions.')
|
651 |
+
h, w = img1.shape[:2]
|
652 |
+
img1 = img1[border:h-border, border:w-border]
|
653 |
+
img2 = img2[border:h-border, border:w-border]
|
654 |
+
|
655 |
+
if img1.ndim == 2:
|
656 |
+
return ssim(img1, img2)
|
657 |
+
elif img1.ndim == 3:
|
658 |
+
if img1.shape[2] == 3:
|
659 |
+
ssims = []
|
660 |
+
for i in range(3):
|
661 |
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
662 |
+
return np.array(ssims).mean()
|
663 |
+
elif img1.shape[2] == 1:
|
664 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
665 |
+
else:
|
666 |
+
raise ValueError('Wrong input image dimensions.')
|
667 |
+
|
668 |
+
|
669 |
+
def ssim(img1, img2):
|
670 |
+
C1 = (0.01 * 255)**2
|
671 |
+
C2 = (0.03 * 255)**2
|
672 |
+
|
673 |
+
img1 = img1.astype(np.float64)
|
674 |
+
img2 = img2.astype(np.float64)
|
675 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
676 |
+
window = np.outer(kernel, kernel.transpose())
|
677 |
+
|
678 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
679 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
680 |
+
mu1_sq = mu1**2
|
681 |
+
mu2_sq = mu2**2
|
682 |
+
mu1_mu2 = mu1 * mu2
|
683 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
684 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
685 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
686 |
+
|
687 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
688 |
+
(sigma1_sq + sigma2_sq + C2))
|
689 |
+
return ssim_map.mean()
|
690 |
+
|
691 |
+
|
692 |
+
'''
|
693 |
+
# --------------------------------------------
|
694 |
+
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
695 |
+
# --------------------------------------------
|
696 |
+
'''
|
697 |
+
|
698 |
+
|
699 |
+
# matlab 'imresize' function, now only support 'bicubic'
|
700 |
+
def cubic(x):
|
701 |
+
absx = torch.abs(x)
|
702 |
+
absx2 = absx**2
|
703 |
+
absx3 = absx**3
|
704 |
+
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
705 |
+
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
706 |
+
|
707 |
+
|
708 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
709 |
+
if (scale < 1) and (antialiasing):
|
710 |
+
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
711 |
+
kernel_width = kernel_width / scale
|
712 |
+
|
713 |
+
# Output-space coordinates
|
714 |
+
x = torch.linspace(1, out_length, out_length)
|
715 |
+
|
716 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
717 |
+
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
718 |
+
# space maps to 1.5 in input space.
|
719 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
720 |
+
|
721 |
+
# What is the left-most pixel that can be involved in the computation?
|
722 |
+
left = torch.floor(u - kernel_width / 2)
|
723 |
+
|
724 |
+
# What is the maximum number of pixels that can be involved in the
|
725 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
726 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
727 |
+
# of this function.
|
728 |
+
P = math.ceil(kernel_width) + 2
|
729 |
+
|
730 |
+
# The indices of the input pixels involved in computing the k-th output
|
731 |
+
# pixel are in row k of the indices matrix.
|
732 |
+
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
733 |
+
1, P).expand(out_length, P)
|
734 |
+
|
735 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
736 |
+
# weights matrix.
|
737 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
738 |
+
# apply cubic kernel
|
739 |
+
if (scale < 1) and (antialiasing):
|
740 |
+
weights = scale * cubic(distance_to_center * scale)
|
741 |
+
else:
|
742 |
+
weights = cubic(distance_to_center)
|
743 |
+
# Normalize the weights matrix so that each row sums to 1.
|
744 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
745 |
+
weights = weights / weights_sum.expand(out_length, P)
|
746 |
+
|
747 |
+
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
748 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
749 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
750 |
+
indices = indices.narrow(1, 1, P - 2)
|
751 |
+
weights = weights.narrow(1, 1, P - 2)
|
752 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
753 |
+
indices = indices.narrow(1, 0, P - 2)
|
754 |
+
weights = weights.narrow(1, 0, P - 2)
|
755 |
+
weights = weights.contiguous()
|
756 |
+
indices = indices.contiguous()
|
757 |
+
sym_len_s = -indices.min() + 1
|
758 |
+
sym_len_e = indices.max() - in_length
|
759 |
+
indices = indices + sym_len_s - 1
|
760 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
761 |
+
|
762 |
+
|
763 |
+
# --------------------------------------------
|
764 |
+
# imresize for tensor image [0, 1]
|
765 |
+
# --------------------------------------------
|
766 |
+
def imresize(img, scale, antialiasing=True):
|
767 |
+
# Now the scale should be the same for H and W
|
768 |
+
# input: img: pytorch tensor, CHW or HW [0,1]
|
769 |
+
# output: CHW or HW [0,1] w/o round
|
770 |
+
need_squeeze = True if img.dim() == 2 else False
|
771 |
+
if need_squeeze:
|
772 |
+
img.unsqueeze_(0)
|
773 |
+
in_C, in_H, in_W = img.size()
|
774 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
775 |
+
kernel_width = 4
|
776 |
+
kernel = 'cubic'
|
777 |
+
|
778 |
+
# Return the desired dimension order for performing the resize. The
|
779 |
+
# strategy is to perform the resize first along the dimension with the
|
780 |
+
# smallest scale factor.
|
781 |
+
# Now we do not support this.
|
782 |
+
|
783 |
+
# get weights and indices
|
784 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
785 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
786 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
787 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
788 |
+
# process H dimension
|
789 |
+
# symmetric copying
|
790 |
+
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
791 |
+
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
792 |
+
|
793 |
+
sym_patch = img[:, :sym_len_Hs, :]
|
794 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
795 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
796 |
+
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
797 |
+
|
798 |
+
sym_patch = img[:, -sym_len_He:, :]
|
799 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
800 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
801 |
+
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
802 |
+
|
803 |
+
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
804 |
+
kernel_width = weights_H.size(1)
|
805 |
+
for i in range(out_H):
|
806 |
+
idx = int(indices_H[i][0])
|
807 |
+
for j in range(out_C):
|
808 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
809 |
+
|
810 |
+
# process W dimension
|
811 |
+
# symmetric copying
|
812 |
+
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
813 |
+
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
814 |
+
|
815 |
+
sym_patch = out_1[:, :, :sym_len_Ws]
|
816 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
817 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
818 |
+
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
819 |
+
|
820 |
+
sym_patch = out_1[:, :, -sym_len_We:]
|
821 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
822 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
823 |
+
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
824 |
+
|
825 |
+
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
826 |
+
kernel_width = weights_W.size(1)
|
827 |
+
for i in range(out_W):
|
828 |
+
idx = int(indices_W[i][0])
|
829 |
+
for j in range(out_C):
|
830 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
831 |
+
if need_squeeze:
|
832 |
+
out_2.squeeze_()
|
833 |
+
return out_2
|
834 |
+
|
835 |
+
|
836 |
+
# --------------------------------------------
|
837 |
+
# imresize for numpy image [0, 1]
|
838 |
+
# --------------------------------------------
|
839 |
+
def imresize_np(img, scale, antialiasing=True):
|
840 |
+
# Now the scale should be the same for H and W
|
841 |
+
# input: img: Numpy, HWC or HW [0,1]
|
842 |
+
# output: HWC or HW [0,1] w/o round
|
843 |
+
img = torch.from_numpy(img)
|
844 |
+
need_squeeze = True if img.dim() == 2 else False
|
845 |
+
if need_squeeze:
|
846 |
+
img.unsqueeze_(2)
|
847 |
+
|
848 |
+
in_H, in_W, in_C = img.size()
|
849 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
850 |
+
kernel_width = 4
|
851 |
+
kernel = 'cubic'
|
852 |
+
|
853 |
+
# Return the desired dimension order for performing the resize. The
|
854 |
+
# strategy is to perform the resize first along the dimension with the
|
855 |
+
# smallest scale factor.
|
856 |
+
# Now we do not support this.
|
857 |
+
|
858 |
+
# get weights and indices
|
859 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
860 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
861 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
862 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
863 |
+
# process H dimension
|
864 |
+
# symmetric copying
|
865 |
+
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
866 |
+
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
867 |
+
|
868 |
+
sym_patch = img[:sym_len_Hs, :, :]
|
869 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
870 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
871 |
+
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
872 |
+
|
873 |
+
sym_patch = img[-sym_len_He:, :, :]
|
874 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
875 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
876 |
+
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
877 |
+
|
878 |
+
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
879 |
+
kernel_width = weights_H.size(1)
|
880 |
+
for i in range(out_H):
|
881 |
+
idx = int(indices_H[i][0])
|
882 |
+
for j in range(out_C):
|
883 |
+
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
884 |
+
|
885 |
+
# process W dimension
|
886 |
+
# symmetric copying
|
887 |
+
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
888 |
+
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
889 |
+
|
890 |
+
sym_patch = out_1[:, :sym_len_Ws, :]
|
891 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
892 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
893 |
+
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
894 |
+
|
895 |
+
sym_patch = out_1[:, -sym_len_We:, :]
|
896 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
897 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
898 |
+
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
899 |
+
|
900 |
+
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
901 |
+
kernel_width = weights_W.size(1)
|
902 |
+
for i in range(out_W):
|
903 |
+
idx = int(indices_W[i][0])
|
904 |
+
for j in range(out_C):
|
905 |
+
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
906 |
+
if need_squeeze:
|
907 |
+
out_2.squeeze_()
|
908 |
+
|
909 |
+
return out_2.numpy()
|
910 |
+
|
911 |
+
|
912 |
+
if __name__ == '__main__':
|
913 |
+
print('---')
|
914 |
+
# img = imread_uint('test.bmp', 3)
|
915 |
+
# img = uint2single(img)
|
916 |
+
# img_bicubic = imresize_np(img, 1/4)
|
gligen/ldm/modules/losses/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
gligen/ldm/modules/losses/contperceptual.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
5 |
+
|
6 |
+
|
7 |
+
class LPIPSWithDiscriminator(nn.Module):
|
8 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
9 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
10 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
11 |
+
disc_loss="hinge"):
|
12 |
+
|
13 |
+
super().__init__()
|
14 |
+
assert disc_loss in ["hinge", "vanilla"]
|
15 |
+
self.kl_weight = kl_weight
|
16 |
+
self.pixel_weight = pixelloss_weight
|
17 |
+
self.perceptual_loss = LPIPS().eval()
|
18 |
+
self.perceptual_weight = perceptual_weight
|
19 |
+
# output log variance
|
20 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
21 |
+
|
22 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
23 |
+
n_layers=disc_num_layers,
|
24 |
+
use_actnorm=use_actnorm
|
25 |
+
).apply(weights_init)
|
26 |
+
self.discriminator_iter_start = disc_start
|
27 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
28 |
+
self.disc_factor = disc_factor
|
29 |
+
self.discriminator_weight = disc_weight
|
30 |
+
self.disc_conditional = disc_conditional
|
31 |
+
|
32 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
33 |
+
if last_layer is not None:
|
34 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
35 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
36 |
+
else:
|
37 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
38 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
39 |
+
|
40 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
41 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
42 |
+
d_weight = d_weight * self.discriminator_weight
|
43 |
+
return d_weight
|
44 |
+
|
45 |
+
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
46 |
+
global_step, last_layer=None, cond=None, split="train",
|
47 |
+
weights=None):
|
48 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
49 |
+
if self.perceptual_weight > 0:
|
50 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
51 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
52 |
+
|
53 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
54 |
+
weighted_nll_loss = nll_loss
|
55 |
+
if weights is not None:
|
56 |
+
weighted_nll_loss = weights*nll_loss
|
57 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
58 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
59 |
+
kl_loss = posteriors.kl()
|
60 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
61 |
+
|
62 |
+
# now the GAN part
|
63 |
+
if optimizer_idx == 0:
|
64 |
+
# generator update
|
65 |
+
if cond is None:
|
66 |
+
assert not self.disc_conditional
|
67 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
68 |
+
else:
|
69 |
+
assert self.disc_conditional
|
70 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
71 |
+
g_loss = -torch.mean(logits_fake)
|
72 |
+
|
73 |
+
if self.disc_factor > 0.0:
|
74 |
+
try:
|
75 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
76 |
+
except RuntimeError:
|
77 |
+
assert not self.training
|
78 |
+
d_weight = torch.tensor(0.0)
|
79 |
+
else:
|
80 |
+
d_weight = torch.tensor(0.0)
|
81 |
+
|
82 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
83 |
+
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
84 |
+
|
85 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
86 |
+
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
87 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
88 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
89 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
90 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
91 |
+
}
|
92 |
+
return loss, log
|
93 |
+
|
94 |
+
if optimizer_idx == 1:
|
95 |
+
# second pass for discriminator update
|
96 |
+
if cond is None:
|
97 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
98 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
99 |
+
else:
|
100 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
101 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
102 |
+
|
103 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
104 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
105 |
+
|
106 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
107 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
108 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
109 |
+
}
|
110 |
+
return d_loss, log
|
111 |
+
|