Pusheen commited on
Commit
ab6a5ca
1 Parent(s): 4abfe96

Update gligen/ldm/models/diffusion/plms.py

Browse files
gligen/ldm/models/diffusion/plms.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  from tqdm import tqdm
4
  from functools import partial
5
  from copy import deepcopy
6
- from diffusers import AutoencoderKL, LMSDiscreteScheduler
7
  from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
8
  import math
9
  from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo,caculate_loss_LAC, caculate_loss_LoCo_V2
@@ -82,11 +82,6 @@ class PLMSSampler(object):
82
  if self.alpha_generator_func != None:
83
  alphas = self.alpha_generator_func(len(time_range))
84
 
85
- # 新加的scheduler
86
- noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012,
87
- beta_schedule="scaled_linear", num_train_timesteps=1000)
88
- noise_scheduler.set_timesteps(50)
89
-
90
  for i, step in enumerate(time_range):
91
 
92
  # set alpha and restore first conv layer
@@ -109,7 +104,7 @@ class PLMSSampler(object):
109
  if loss_type !=None and loss_type!='standard':
110
  if input['object_position'] != []:
111
 
112
- time_factor = noise_scheduler.sigmas[i] ** 2
113
  x = self.update_loss_LoCo( input,i, index, ts, time_factor = time_factor)
114
 
115
  input["x"] = x
@@ -122,7 +117,6 @@ class PLMSSampler(object):
122
  return img
123
 
124
 
125
-
126
  def update_loss_LoCo(self, input,index1, index, ts, time_factor, type_loss='self_accross'):
127
 
128
  # loss_scale = 30
 
3
  from tqdm import tqdm
4
  from functools import partial
5
  from copy import deepcopy
6
+
7
  from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
8
  import math
9
  from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo,caculate_loss_LAC, caculate_loss_LoCo_V2
 
82
  if self.alpha_generator_func != None:
83
  alphas = self.alpha_generator_func(len(time_range))
84
 
 
 
 
 
 
85
  for i, step in enumerate(time_range):
86
 
87
  # set alpha and restore first conv layer
 
104
  if loss_type !=None and loss_type!='standard':
105
  if input['object_position'] != []:
106
 
107
+
108
  x = self.update_loss_LoCo( input,i, index, ts, time_factor = time_factor)
109
 
110
  input["x"] = x
 
117
  return img
118
 
119
 
 
120
  def update_loss_LoCo(self, input,index1, index, ts, time_factor, type_loss='self_accross'):
121
 
122
  # loss_scale = 30