Spaces:
Sleeping
Sleeping
Update gligen/ldm/models/diffusion/plms.py
Browse files
gligen/ldm/models/diffusion/plms.py
CHANGED
@@ -5,7 +5,7 @@ from functools import partial
|
|
5 |
from copy import deepcopy
|
6 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
7 |
import math
|
8 |
-
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att
|
9 |
class PLMSSampler(object):
|
10 |
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
|
11 |
super().__init__()
|
@@ -102,12 +102,13 @@ class PLMSSampler(object):
|
|
102 |
# three loss types
|
103 |
if loss_type !=None and loss_type!='standard':
|
104 |
if input['object_position'] != []:
|
105 |
-
if loss_type=='SAR_CAR':
|
106 |
-
|
107 |
-
elif loss_type=='SAR':
|
108 |
-
|
109 |
-
elif loss_type=='CAR':
|
110 |
-
|
|
|
111 |
input["x"] = x
|
112 |
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
|
113 |
input["x"] = img
|
@@ -116,7 +117,56 @@ class PLMSSampler(object):
|
|
116 |
old_eps.pop(0)
|
117 |
|
118 |
return img
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
|
121 |
if index1 < 10:
|
122 |
loss_scale = 4
|
|
|
5 |
from copy import deepcopy
|
6 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
7 |
import math
|
8 |
+
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att, caculate_loss_LoCo_V2
|
9 |
class PLMSSampler(object):
|
10 |
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
|
11 |
super().__init__()
|
|
|
102 |
# three loss types
|
103 |
if loss_type !=None and loss_type!='standard':
|
104 |
if input['object_position'] != []:
|
105 |
+
# if loss_type=='SAR_CAR':
|
106 |
+
# x = self.update_loss_self_cross( input,i, index, ts )
|
107 |
+
# elif loss_type=='SAR':
|
108 |
+
# x = self.update_only_self( input,i, index, ts )
|
109 |
+
# elif loss_type=='CAR':
|
110 |
+
# x = self.update_loss_only_cross( input,i, index, ts )
|
111 |
+
x = self.update_loss_LoCo( input,i, index, ts )
|
112 |
input["x"] = x
|
113 |
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
|
114 |
input["x"] = img
|
|
|
117 |
old_eps.pop(0)
|
118 |
|
119 |
return img
|
120 |
+
|
121 |
+
|
122 |
+
def update_loss_LoCo(self, input,index1, index, ts, time_factor, type_loss='self_accross'):
|
123 |
+
|
124 |
+
# loss_scale = 30
|
125 |
+
# max_iter = 5
|
126 |
+
#print('time_factor is: ', time_factor)
|
127 |
+
if index1 < 10:
|
128 |
+
loss_scale = 8
|
129 |
+
max_iter = 5
|
130 |
+
elif index1 < 20:
|
131 |
+
loss_scale = 5
|
132 |
+
max_iter = 5
|
133 |
+
else:
|
134 |
+
loss_scale = 1
|
135 |
+
max_iter = 1
|
136 |
+
loss_threshold = 0.1
|
137 |
+
|
138 |
+
max_index = 30
|
139 |
+
x = deepcopy(input["x"])
|
140 |
+
iteration = 0
|
141 |
+
loss = torch.tensor(10000)
|
142 |
+
input["timesteps"] = ts
|
143 |
+
|
144 |
+
# print("optimize", index1)
|
145 |
+
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
|
146 |
+
# print('iter', iteration)
|
147 |
+
x = x.requires_grad_(True)
|
148 |
+
# print('x shape', x.shape)
|
149 |
+
input['x'] = x
|
150 |
+
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
|
151 |
+
|
152 |
+
bboxes = input['boxes']
|
153 |
+
object_positions = input['object_position']
|
154 |
+
loss2 = caculate_loss_LoCo_V2(att_second,att_first,att_third, bboxes=bboxes,
|
155 |
+
object_positions=object_positions, t = index1)*loss_scale
|
156 |
+
# loss = loss2
|
157 |
+
# loss.requires_grad_(True)
|
158 |
+
#print('LoCo loss', loss)
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
grad_cond = torch.autograd.grad(loss2.requires_grad_(True), [x])[0]
|
163 |
+
# grad_cond = x.grad
|
164 |
+
x = x - grad_cond
|
165 |
+
x = x.detach()
|
166 |
+
iteration += 1
|
167 |
+
torch.cuda.empty_cache()
|
168 |
+
return x
|
169 |
+
|
170 |
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
|
171 |
if index1 < 10:
|
172 |
loss_scale = 4
|