import gradio as gr import os import torch from omegaconf import OmegaConf from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt import json import numpy as np from PIL import Image, ImageDraw, ImageFont from functools import partial from collections import Counter import math import gc from gradio import processing_utils from typing import Optional import warnings from datetime import datetime from example_component import create_examples from huggingface_hub import hf_hub_download hf_hub_download = partial(hf_hub_download, library_name="gligen_demo") import cv2 import sys sys.tracebacklimit = 0 def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None): cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') def load_ckpt_config_from_hf(modality): ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model') config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config') return ckpt, config def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None): pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality) config = OmegaConf.create( config["_content"] ) # config used in training config.alpha_scale = 1.0 if common_instances is None: common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model') common_instances = load_common_ckpt(config, common_ckpt) loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances) return loaded_model_list, common_instances class Instance: def __init__(self, capacity = 2): self.model_type = 'base' self.loaded_model_list = {} self.counter = Counter() self.global_counter = Counter() self.loaded_model_list['base'], self.common_instances = ckpt_load_helper( 'gligen-generation-text-box', is_inpaint=False, is_style=False, common_instances=None ) self.capacity = capacity def _log(self, model_type, batch_size, instruction, phrase_list): self.counter[model_type] += 1 self.global_counter[model_type] += 1 current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format( current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list )) def get_model(self, model_type, batch_size, instruction, phrase_list): if model_type in self.loaded_model_list: self._log(model_type, batch_size, instruction, phrase_list) return self.loaded_model_list[model_type] if self.capacity == len(self.loaded_model_list): least_used_type = self.counter.most_common()[-1][0] del self.loaded_model_list[least_used_type] del self.counter[least_used_type] gc.collect() torch.cuda.empty_cache() self.loaded_model_list[model_type] = self._get_model(model_type) self._log(model_type, batch_size, instruction, phrase_list) return self.loaded_model_list[model_type] def _get_model(self, model_type): if model_type == 'base': return ckpt_load_helper( 'gligen-generation-text-box', is_inpaint=False, is_style=False, common_instances=self.common_instances )[0] elif model_type == 'inpaint': return ckpt_load_helper( 'gligen-inpainting-text-box', is_inpaint=True, is_style=False, common_instances=self.common_instances )[0] elif model_type == 'style': return ckpt_load_helper( 'gligen-generation-text-image-box', is_inpaint=False, is_style=True, common_instances=self.common_instances )[0] assert False instance = Instance() def load_clip_model(): from transformers import CLIPProcessor, CLIPModel version = "openai/clip-vit-large-patch14" model = CLIPModel.from_pretrained(version).cuda() processor = CLIPProcessor.from_pretrained(version) return { 'version': version, 'model': model, 'processor': processor, } clip_model = load_clip_model() class ImageMask(gr.components.Image): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) def preprocess(self, x): if x is None: return x if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict: decode_image = processing_utils.decode_base64_to_image(x) print('decode to 64') width, height = decode_image.size img = np.asarray(decode_image) return {'image':img, 'mask':binarize_2(img)} mask = np.zeros((height, width, 4), dtype=np.uint8) mask[..., -1] = 255 mask = self.postprocess(mask) x = {'image': x, 'mask': mask} print('vao preprocess-------------------------') hh = super().preprocess(x) if (hh['image'].min()!=255) and (hh['mask'][:,:,:3].max()==0): hh['mask'] = binarize_2(hh['image']) return hh class Blocks(gr.Blocks): def __init__( self, theme: str = "default", analytics_enabled: Optional[bool] = None, mode: str = "blocks", title: str = "Gradio", css: Optional[str] = None, **kwargs, ): self.extra_configs = { 'thumbnail': kwargs.pop('thumbnail', ''), 'url': kwargs.pop('url', 'https://gradio.app/'), 'creator': kwargs.pop('creator', '@teamGradio'), } super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs) warnings.filterwarnings("ignore") def get_config_file(self): config = super(Blocks, self).get_config_file() for k, v in self.extra_configs.items(): config[k] = v return config ''' inference model ''' # @torch.no_grad() def inference(task, language_instruction, phrase_list, location_list, inpainting_boxes_nodrop, image, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, actual_mask, style_image, *args, **kwargs): # import pdb; pdb.set_trace() # grounding_instruction = json.loads(grounding_instruction) # phrase_list, location_list = [], [] # for k, v in grounding_instruction.items(): # phrase_list.append(k) # location_list.append(v) placeholder_image = Image.open('images/teddy.jpg').convert("RGB") image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled batch_size = int(batch_size) if not 1 <= batch_size <= 4: batch_size = 1 if style_image == None: has_text_mask = 1 has_image_mask = 0 # then we hack above 'image_list' else: valid_phrase_len = len(phrase_list) phrase_list += ['placeholder'] has_text_mask = [1]*valid_phrase_len + [0] image_list = [placeholder_image]*valid_phrase_len + [style_image] has_image_mask = [0]*valid_phrase_len + [1] location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location instruction = dict( prompt = language_instruction, phrases = phrase_list, images = image_list, locations = location_list, alpha_type = [alpha_sample, 0, 1.0 - alpha_sample], has_text_mask = has_text_mask, has_image_mask = has_image_mask, save_folder_name = language_instruction, guidance_scale = guidance_scale, batch_size = batch_size, fix_seed = bool(fix_seed), rand_seed = int(rand_seed), actual_mask = actual_mask, inpainting_boxes_nodrop = inpainting_boxes_nodrop, ) get_model = partial(instance.get_model, batch_size=batch_size, instruction=language_instruction, phrase_list=phrase_list) with torch.autocast(device_type='cuda', dtype=torch.float16): if task == 'User provide boxes' or 'Available boxes': if style_image == None: result = grounded_generation_box(get_model('base'), instruction, *args, **kwargs) torch.cuda.empty_cache() return result else: return grounded_generation_box(get_model('style'), instruction, *args, **kwargs) def draw_box(boxes=[], texts=[], img=None): if len(boxes) == 0 and img is None: return None if img is None: img = Image.new('RGB', (512, 512), (255, 255, 255)) colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"] draw = ImageDraw.Draw(img) font = ImageFont.truetype("DejaVuSansMono.ttf", size=18) for bid, box in enumerate(boxes): draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4) anno_text = texts[bid] draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4) draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255)) return img def get_concat(ims): if len(ims) == 1: n_col = 1 else: n_col = 2 n_row = math.ceil(len(ims) / 2) dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white") for i, im in enumerate(ims): row_id = i // n_col col_id = i % n_col dst.paste(im, (im.width * col_id, im.height * row_id)) return dst def auto_append_grounding(language_instruction, grounding_texts): for grounding_text in grounding_texts: if grounding_text.lower() not in language_instruction.lower() and grounding_text != 'auto': language_instruction += "; " + grounding_text return language_instruction def generate(task, language_instruction, grounding_texts, sketch_pad, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image, state): if 'boxes' not in state: state['boxes'] = [] boxes = state['boxes'] grounding_texts = [x.strip() for x in grounding_texts.split(';')] # assert len(boxes) == len(grounding_texts) if len(boxes) != len(grounding_texts): if len(boxes) < len(grounding_texts): raise ValueError("""The number of boxes should be equal to the number of grounding objects. Number of boxes drawn: {}, number of grounding tokens: {}. Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts))) grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts)) boxes = (np.asarray(boxes) / 512).tolist() grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)}) image = None actual_mask = None if append_grounding: language_instruction = auto_append_grounding(language_instruction, grounding_texts) gen_images, gen_overlays = inference( task, language_instruction, grounding_texts,boxes, boxes, image, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model, ) blank_samples = batch_size % 2 if batch_size > 1 else 0 gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] return gen_images + [state] def binarize(x): return (x != 0).astype('uint8') * 255 def binarize_2(x): gray_image = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) return (gray_image!=255).astype('uint8') * 255 def sized_center_crop(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) return img[starty:starty+cropy, startx:startx+cropx] def sized_center_fill(img, fill, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) img[starty:starty+cropy, startx:startx+cropx] = fill return img def sized_center_mask(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) center_region = img[starty:starty+cropy, startx:startx+cropx].copy() img = (img * 0.2).astype('uint8') img[starty:starty+cropy, startx:startx+cropx] = center_region return img def center_crop(img, HW=None, tgt_size=(512, 512)): if HW is None: H, W = img.shape[:2] HW = min(H, W) img = sized_center_crop(img, HW, HW) img = Image.fromarray(img) img = img.resize(tgt_size) return np.array(img) # 接收 sketchpad 的输入 (左边) def draw(task, input, grounding_texts, new_image_trigger, state, generate_parsed, box_image): print('input', generate_parsed) if type(input) == dict: image = input['image'] mask = input['mask'] if generate_parsed==1: generate_parsed = 0 # import pdb; pdb.set_trace() print('do nothing') return [box_image, new_image_trigger, 1., state, generate_parsed] else: mask = input if mask.ndim == 3: mask = mask[..., 0] image_scale = 1.0 print('vao draw--------------------') mask = binarize(mask) if mask.shape != (512, 512): # assert False, "should not receive any non- 512x512 masks." if 'original_image' in state and state['original_image'].shape[:2] == mask.shape: mask = center_crop(mask, state['inpaint_hw']) image = center_crop(state['original_image'], state['inpaint_hw']) else: mask = np.zeros((512, 512), dtype=np.uint8) mask = binarize(mask) if type(mask) != np.ndarray: mask = np.array(mask) # if mask.sum() == 0: state = {} print('delete state') if True: image = None else: image = Image.fromarray(image) if 'boxes' not in state: state['boxes'] = [] if 'masks' not in state or len(state['masks']) == 0 : state['masks'] = [] last_mask = np.zeros_like(mask) else: last_mask = state['masks'][-1] if type(mask) == np.ndarray and mask.size > 1 : diff_mask = mask - last_mask else: diff_mask = np.zeros([]) if diff_mask.sum() > 0: x1x2 = np.where(diff_mask.max(0) > 1)[0] y1y2 = np.where(diff_mask.max(1) > 1)[0] y1, y2 = y1y2.min(), y1y2.max() x1, x2 = x1x2.min(), x1x2.max() if (x2 - x1 > 5) and (y2 - y1 > 5): state['masks'].append(mask.copy()) state['boxes'].append((x1, y1, x2, y2)) grounding_texts = [x.strip() for x in grounding_texts.split(';')] grounding_texts = [x for x in grounding_texts if len(x) > 0] if len(grounding_texts) < len(state['boxes']): grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))] box_image = draw_box(state['boxes'], grounding_texts, image) generate_parsed = 0 return [box_image, new_image_trigger, image_scale, state, generate_parsed] def change_state(bboxes,layout, state, instruction, trigger_stage, boxes): if trigger_stage ==0 : return [boxes, state, 0] # mask = state['boxes'] = [] state['masks'] = [] image = None list_boxes = bboxes.split('/') result =[] for b in list_boxes: ints = b[1:-1].split(',') l = [] for i in ints: l.append(int(i)) result.append(l) print('run change state') for box in result: state['boxes'].append(box) grounding_texts = [x.strip() for x in instruction.split(';')] grounding_texts = [x for x in grounding_texts if len(x) > 0] if len(grounding_texts) < len(result): grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(result))] box_image = draw_box(result, grounding_texts) mask = binarize_2(layout['image']) state['masks'].append(mask.copy()) # print('done change state', state) print('done change state') # import pdb; pdb.set_trace() return [box_image,state, trigger_stage] def example_click(name, grounding_instruction, instruction, bboxes,generate_parsed, trigger_parsed): list_boxes = bboxes.split('/') result =[] for b in list_boxes: ints = b[1:-1].split(',') l = [] for i in ints: l.append(int(i)) result.append(l) print('run change state') box_image = draw_box(result, instruction) trigger_parsed += 1 print('done the example click') return [box_image, trigger_parsed] def clear(task, sketch_pad_trigger, batch_size, state,trigger_stage, switch_task=False): sketch_pad_trigger = sketch_pad_trigger + 1 trigger_stage = 0 blank_samples = batch_size % 2 if batch_size > 1 else 0 out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] state = {} return [None, sketch_pad_trigger, None, 1.0] + out_images + [state] + [trigger_stage] css = """ #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img { height: var(--height) !important; max-height: var(--height) !important; min-height: var(--height) !important; } #paper-info a { color:#008AD7; text-decoration: none; } #paper-info a:hover { cursor: pointer; text-decoration: none; } #my_image > div.fixed-height { height: var(--height) !important; } """ rescale_js = """ function(x) { const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; const image_width = root.querySelector('#img2img_image').clientWidth; const target_height = parseInt(image_width * image_scale); document.body.style.setProperty('--height', `${target_height}px`); root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; return x; } """ # [Paper] with Blocks( css=css, analytics_enabled=False, title="Attention-refocusing demo", ) as main: description = """
Grounded Text-to-Image Synthesis with Attention Refocusing
[Project Page]
[GitHub]
To identify the areas of interest based on specific spatial parameters, you need to (1) ⌨️ input the names of the concepts you're interested in Grounding Instruction, and (2) 🖱️ draw their corresponding bounding boxes using Sketch Pad -- the parsed boxes will automatically be showed up once you've drawn them.
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.