Spaces:
Running
on
Zero
Running
on
Zero
import psutil | |
import logging | |
from enum import Enum | |
from comfy.cli_args import args | |
import torch | |
import sys | |
import platform | |
class VRAMState(Enum): | |
DISABLED = 0 #No vram present: no need to move models to vram | |
NO_VRAM = 1 #Very low vram: enable all the options to save vram | |
LOW_VRAM = 2 | |
NORMAL_VRAM = 3 | |
HIGH_VRAM = 4 | |
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. | |
class CPUState(Enum): | |
GPU = 0 | |
CPU = 1 | |
MPS = 2 | |
# Determine VRAM State | |
vram_state = VRAMState.NORMAL_VRAM | |
set_vram_to = VRAMState.NORMAL_VRAM | |
cpu_state = CPUState.GPU | |
total_vram = 0 | |
lowvram_available = True | |
xpu_available = False | |
if args.deterministic: | |
logging.info("Using deterministic algorithms for pytorch") | |
torch.use_deterministic_algorithms(True, warn_only=True) | |
directml_enabled = False | |
if args.directml is not None: | |
import torch_directml | |
directml_enabled = True | |
device_index = args.directml | |
if device_index < 0: | |
directml_device = torch_directml.device() | |
else: | |
directml_device = torch_directml.device(device_index) | |
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index))) | |
# torch_directml.disable_tiled_resources(True) | |
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. | |
try: | |
import intel_extension_for_pytorch as ipex | |
if torch.xpu.is_available(): | |
xpu_available = True | |
except: | |
pass | |
try: | |
if torch.backends.mps.is_available(): | |
cpu_state = CPUState.MPS | |
import torch.mps | |
except: | |
pass | |
if args.cpu: | |
cpu_state = CPUState.CPU | |
def is_intel_xpu(): | |
global cpu_state | |
global xpu_available | |
if cpu_state == CPUState.GPU: | |
if xpu_available: | |
return True | |
return False | |
def get_torch_device(): | |
global directml_enabled | |
global cpu_state | |
if directml_enabled: | |
global directml_device | |
return directml_device | |
if cpu_state == CPUState.MPS: | |
return torch.device("mps") | |
if cpu_state == CPUState.CPU: | |
return torch.device("cpu") | |
else: | |
if is_intel_xpu(): | |
return torch.device("xpu", torch.xpu.current_device()) | |
else: | |
return torch.device(torch.cuda.current_device()) | |
def get_total_memory(dev=None, torch_total_too=False): | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
mem_total = psutil.virtual_memory().total | |
mem_total_torch = mem_total | |
else: | |
if directml_enabled: | |
mem_total = 1024 * 1024 * 1024 #TODO | |
mem_total_torch = mem_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_total_torch = mem_reserved | |
mem_total = torch.xpu.get_device_properties(dev).total_memory | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_reserved = stats['reserved_bytes.all.current'] | |
_, mem_total_cuda = torch.cuda.mem_get_info(dev) | |
mem_total_torch = mem_reserved | |
mem_total = mem_total_cuda | |
if torch_total_too: | |
return (mem_total, mem_total_torch) | |
else: | |
return mem_total | |
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) | |
total_ram = psutil.virtual_memory().total / (1024 * 1024) | |
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) | |
try: | |
logging.info("pytorch version: {}".format(torch.version.__version__)) | |
except: | |
pass | |
try: | |
OOM_EXCEPTION = torch.cuda.OutOfMemoryError | |
except: | |
OOM_EXCEPTION = Exception | |
XFORMERS_VERSION = "" | |
XFORMERS_ENABLED_VAE = True | |
if args.disable_xformers: | |
XFORMERS_IS_AVAILABLE = False | |
else: | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
try: | |
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library | |
except: | |
pass | |
try: | |
XFORMERS_VERSION = xformers.version.__version__ | |
logging.info("xformers version: {}".format(XFORMERS_VERSION)) | |
if XFORMERS_VERSION.startswith("0.0.18"): | |
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") | |
logging.warning("Please downgrade or upgrade xformers to a different version.\n") | |
XFORMERS_ENABLED_VAE = False | |
except: | |
pass | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
def is_nvidia(): | |
global cpu_state | |
if cpu_state == CPUState.GPU: | |
if torch.version.cuda: | |
return True | |
return False | |
ENABLE_PYTORCH_ATTENTION = False | |
if args.use_pytorch_cross_attention: | |
ENABLE_PYTORCH_ATTENTION = True | |
XFORMERS_IS_AVAILABLE = False | |
VAE_DTYPES = [torch.float32] | |
try: | |
if is_nvidia(): | |
torch_version = torch.version.__version__ | |
if int(torch_version[0]) >= 2: | |
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: | |
ENABLE_PYTORCH_ATTENTION = True | |
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: | |
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
if is_intel_xpu(): | |
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: | |
ENABLE_PYTORCH_ATTENTION = True | |
except: | |
pass | |
if is_intel_xpu(): | |
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
if args.cpu_vae: | |
VAE_DTYPES = [torch.float32] | |
if ENABLE_PYTORCH_ATTENTION: | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
if args.lowvram: | |
set_vram_to = VRAMState.LOW_VRAM | |
lowvram_available = True | |
elif args.novram: | |
set_vram_to = VRAMState.NO_VRAM | |
elif args.highvram or args.gpu_only: | |
vram_state = VRAMState.HIGH_VRAM | |
FORCE_FP32 = False | |
FORCE_FP16 = False | |
if args.force_fp32: | |
logging.info("Forcing FP32, if this improves things please report it.") | |
FORCE_FP32 = True | |
if args.force_fp16: | |
logging.info("Forcing FP16.") | |
FORCE_FP16 = True | |
if lowvram_available: | |
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): | |
vram_state = set_vram_to | |
if cpu_state != CPUState.GPU: | |
vram_state = VRAMState.DISABLED | |
if cpu_state == CPUState.MPS: | |
vram_state = VRAMState.SHARED | |
logging.info(f"Set vram state to: {vram_state.name}") | |
DISABLE_SMART_MEMORY = args.disable_smart_memory | |
if DISABLE_SMART_MEMORY: | |
logging.info("Disabling smart memory management") | |
def get_torch_device_name(device): | |
if hasattr(device, 'type'): | |
if device.type == "cuda": | |
try: | |
allocator_backend = torch.cuda.get_allocator_backend() | |
except: | |
allocator_backend = "" | |
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) | |
else: | |
return "{}".format(device.type) | |
elif is_intel_xpu(): | |
return "{} {}".format(device, torch.xpu.get_device_name(device)) | |
else: | |
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) | |
try: | |
logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) | |
except: | |
logging.warning("Could not pick default device.") | |
current_loaded_models = [] | |
def module_size(module): | |
module_mem = 0 | |
sd = module.state_dict() | |
for k in sd: | |
t = sd[k] | |
module_mem += t.nelement() * t.element_size() | |
return module_mem | |
class LoadedModel: | |
def __init__(self, model): | |
self.model = model | |
self.device = model.load_device | |
self.weights_loaded = False | |
self.real_model = None | |
self.currently_used = True | |
def model_memory(self): | |
return self.model.model_size() | |
def model_memory_required(self, device): | |
if device == self.model.current_loaded_device(): | |
return 0 | |
else: | |
return self.model_memory() | |
def model_load(self, lowvram_model_memory=0, force_patch_weights=False): | |
patch_model_to = self.device | |
self.model.model_patches_to(self.device) | |
self.model.model_patches_to(self.model.model_dtype()) | |
load_weights = not self.weights_loaded | |
try: | |
if lowvram_model_memory > 0 and load_weights: | |
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights) | |
else: | |
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights) | |
except Exception as e: | |
self.model.unpatch_model(self.model.offload_device) | |
self.model_unload() | |
raise e | |
if is_intel_xpu() and not args.disable_ipex_optimize: | |
self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True) | |
self.weights_loaded = True | |
return self.real_model | |
def should_reload_model(self, force_patch_weights=False): | |
if force_patch_weights and self.model.lowvram_patch_counter > 0: | |
return True | |
return False | |
def model_unload(self, unpatch_weights=True): | |
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights) | |
self.model.model_patches_to(self.model.offload_device) | |
self.weights_loaded = self.weights_loaded and not unpatch_weights | |
self.real_model = None | |
def __eq__(self, other): | |
return self.model is other.model | |
def minimum_inference_memory(): | |
return (1024 * 1024 * 1024) * 1.2 | |
def unload_model_clones(model, unload_weights_only=True, force_unload=True): | |
to_unload = [] | |
for i in range(len(current_loaded_models)): | |
if model.is_clone(current_loaded_models[i].model): | |
to_unload = [i] + to_unload | |
if len(to_unload) == 0: | |
return True | |
same_weights = 0 | |
for i in to_unload: | |
if model.clone_has_same_weights(current_loaded_models[i].model): | |
same_weights += 1 | |
if same_weights == len(to_unload): | |
unload_weight = False | |
else: | |
unload_weight = True | |
if not force_unload: | |
if unload_weights_only and unload_weight == False: | |
return None | |
for i in to_unload: | |
logging.debug("unload clone {} {}".format(i, unload_weight)) | |
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) | |
return unload_weight | |
def free_memory(memory_required, device, keep_loaded=[]): | |
unloaded_model = [] | |
can_unload = [] | |
unloaded_models = [] | |
for i in range(len(current_loaded_models) -1, -1, -1): | |
shift_model = current_loaded_models[i] | |
if shift_model.device == device: | |
if shift_model not in keep_loaded: | |
can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) | |
shift_model.currently_used = False | |
for x in sorted(can_unload): | |
i = x[-1] | |
if not DISABLE_SMART_MEMORY: | |
if get_free_memory(device) > memory_required: | |
break | |
current_loaded_models[i].model_unload() | |
unloaded_model.append(i) | |
for i in sorted(unloaded_model, reverse=True): | |
unloaded_models.append(current_loaded_models.pop(i)) | |
if len(unloaded_model) > 0: | |
soft_empty_cache() | |
else: | |
if vram_state != VRAMState.HIGH_VRAM: | |
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) | |
if mem_free_torch > mem_free_total * 0.25: | |
soft_empty_cache() | |
return unloaded_models | |
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None): | |
global vram_state | |
inference_memory = minimum_inference_memory() | |
extra_mem = max(inference_memory, memory_required) | |
if minimum_memory_required is None: | |
minimum_memory_required = extra_mem | |
else: | |
minimum_memory_required = max(inference_memory, minimum_memory_required) | |
models = set(models) | |
models_to_load = [] | |
models_already_loaded = [] | |
for x in models: | |
loaded_model = LoadedModel(x) | |
loaded = None | |
try: | |
loaded_model_index = current_loaded_models.index(loaded_model) | |
except: | |
loaded_model_index = None | |
if loaded_model_index is not None: | |
loaded = current_loaded_models[loaded_model_index] | |
if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic | |
current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True) | |
loaded = None | |
else: | |
loaded.currently_used = True | |
models_already_loaded.append(loaded) | |
if loaded is None: | |
if hasattr(x, "model"): | |
logging.info(f"Requested to load {x.model.__class__.__name__}") | |
models_to_load.append(loaded_model) | |
if len(models_to_load) == 0: | |
devs = set(map(lambda a: a.device, models_already_loaded)) | |
for d in devs: | |
if d != torch.device("cpu"): | |
free_memory(extra_mem, d, models_already_loaded) | |
free_mem = get_free_memory(d) | |
if free_mem < minimum_memory_required: | |
logging.info("Unloading models for lowram load.") #TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed. | |
models_to_load = free_memory(minimum_memory_required, d) | |
logging.info("{} models unloaded.".format(len(models_to_load))) | |
if len(models_to_load) == 0: | |
return | |
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") | |
total_memory_required = {} | |
for loaded_model in models_to_load: | |
if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different | |
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) | |
for device in total_memory_required: | |
if device != torch.device("cpu"): | |
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) | |
for loaded_model in models_to_load: | |
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded | |
if weights_unloaded is not None: | |
loaded_model.weights_loaded = not weights_unloaded | |
for loaded_model in models_to_load: | |
model = loaded_model.model | |
torch_dev = model.load_device | |
if is_device_cpu(torch_dev): | |
vram_set_state = VRAMState.DISABLED | |
else: | |
vram_set_state = vram_state | |
lowvram_model_memory = 0 | |
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): | |
model_size = loaded_model.model_memory_required(torch_dev) | |
current_free_mem = get_free_memory(torch_dev) | |
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory())) | |
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary | |
lowvram_model_memory = 0 | |
if vram_set_state == VRAMState.NO_VRAM: | |
lowvram_model_memory = 64 * 1024 * 1024 | |
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) | |
current_loaded_models.insert(0, loaded_model) | |
return | |
def load_model_gpu(model): | |
return load_models_gpu([model]) | |
def loaded_models(only_currently_used=False): | |
output = [] | |
for m in current_loaded_models: | |
if only_currently_used: | |
if not m.currently_used: | |
continue | |
output.append(m.model) | |
return output | |
def cleanup_models(keep_clone_weights_loaded=False): | |
to_delete = [] | |
for i in range(len(current_loaded_models)): | |
if sys.getrefcount(current_loaded_models[i].model) <= 2: | |
if not keep_clone_weights_loaded: | |
to_delete = [i] + to_delete | |
#TODO: find a less fragile way to do this. | |
elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model | |
to_delete = [i] + to_delete | |
for i in to_delete: | |
x = current_loaded_models.pop(i) | |
x.model_unload() | |
del x | |
def dtype_size(dtype): | |
dtype_size = 4 | |
if dtype == torch.float16 or dtype == torch.bfloat16: | |
dtype_size = 2 | |
elif dtype == torch.float32: | |
dtype_size = 4 | |
else: | |
try: | |
dtype_size = dtype.itemsize | |
except: #Old pytorch doesn't have .itemsize | |
pass | |
return dtype_size | |
def unet_offload_device(): | |
if vram_state == VRAMState.HIGH_VRAM: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def unet_inital_load_device(parameters, dtype): | |
torch_dev = get_torch_device() | |
if vram_state == VRAMState.HIGH_VRAM: | |
return torch_dev | |
cpu_dev = torch.device("cpu") | |
if DISABLE_SMART_MEMORY: | |
return cpu_dev | |
model_size = dtype_size(dtype) * parameters | |
mem_dev = get_free_memory(torch_dev) | |
mem_cpu = get_free_memory(cpu_dev) | |
if mem_dev > mem_cpu and model_size < mem_dev: | |
return torch_dev | |
else: | |
return cpu_dev | |
def maximum_vram_for_weights(device=None): | |
return (get_total_memory(device) * 0.88 - minimum_inference_memory()) | |
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
if args.bf16_unet: | |
return torch.bfloat16 | |
if args.fp16_unet: | |
return torch.float16 | |
if args.fp8_e4m3fn_unet: | |
return torch.float8_e4m3fn | |
if args.fp8_e5m2_unet: | |
return torch.float8_e5m2 | |
fp8_dtype = None | |
try: | |
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: | |
if dtype in supported_dtypes: | |
fp8_dtype = dtype | |
break | |
except: | |
pass | |
if fp8_dtype is not None: | |
free_model_memory = maximum_vram_for_weights(device) | |
if model_params * 2 > free_model_memory: | |
return fp8_dtype | |
for dt in supported_dtypes: | |
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params): | |
if torch.float16 in supported_dtypes: | |
return torch.float16 | |
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params): | |
if torch.bfloat16 in supported_dtypes: | |
return torch.bfloat16 | |
for dt in supported_dtypes: | |
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True): | |
if torch.float16 in supported_dtypes: | |
return torch.float16 | |
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True): | |
if torch.bfloat16 in supported_dtypes: | |
return torch.bfloat16 | |
return torch.float32 | |
# None means no manual cast | |
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
if weight_dtype == torch.float32: | |
return None | |
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) | |
if fp16_supported and weight_dtype == torch.float16: | |
return None | |
bf16_supported = should_use_bf16(inference_device) | |
if bf16_supported and weight_dtype == torch.bfloat16: | |
return None | |
for dt in supported_dtypes: | |
if dt == torch.float16 and fp16_supported: | |
return torch.float16 | |
if dt == torch.bfloat16 and bf16_supported: | |
return torch.bfloat16 | |
return torch.float32 | |
def text_encoder_offload_device(): | |
if args.gpu_only: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def text_encoder_device(): | |
if args.gpu_only: | |
return get_torch_device() | |
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: | |
if should_use_fp16(prioritize_performance=False): | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
else: | |
return torch.device("cpu") | |
def text_encoder_dtype(device=None): | |
if args.fp8_e4m3fn_text_enc: | |
return torch.float8_e4m3fn | |
elif args.fp8_e5m2_text_enc: | |
return torch.float8_e5m2 | |
elif args.fp16_text_enc: | |
return torch.float16 | |
elif args.fp32_text_enc: | |
return torch.float32 | |
if is_device_cpu(device): | |
return torch.float16 | |
return torch.float16 | |
def intermediate_device(): | |
if args.gpu_only: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def vae_device(): | |
if args.cpu_vae: | |
return torch.device("cpu") | |
return get_torch_device() | |
def vae_offload_device(): | |
if args.gpu_only: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def vae_dtype(device=None, allowed_dtypes=[]): | |
global VAE_DTYPES | |
if args.fp16_vae: | |
return torch.float16 | |
elif args.bf16_vae: | |
return torch.bfloat16 | |
elif args.fp32_vae: | |
return torch.float32 | |
for d in allowed_dtypes: | |
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): | |
return d | |
if d in VAE_DTYPES: | |
return d | |
return VAE_DTYPES[0] | |
def get_autocast_device(dev): | |
if hasattr(dev, 'type'): | |
return dev.type | |
return "cuda" | |
def supports_dtype(device, dtype): #TODO | |
if dtype == torch.float32: | |
return True | |
if is_device_cpu(device): | |
return False | |
if dtype == torch.float16: | |
return True | |
if dtype == torch.bfloat16: | |
return True | |
return False | |
def supports_cast(device, dtype): #TODO | |
if dtype == torch.float32: | |
return True | |
if dtype == torch.float16: | |
return True | |
if directml_enabled: #TODO: test this | |
return False | |
if dtype == torch.bfloat16: | |
return True | |
if is_device_mps(device): | |
return False | |
if dtype == torch.float8_e4m3fn: | |
return True | |
if dtype == torch.float8_e5m2: | |
return True | |
return False | |
def pick_weight_dtype(dtype, fallback_dtype, device=None): | |
if dtype is None: | |
dtype = fallback_dtype | |
elif dtype_size(dtype) > dtype_size(fallback_dtype): | |
dtype = fallback_dtype | |
if not supports_cast(device, dtype): | |
dtype = fallback_dtype | |
return dtype | |
def device_supports_non_blocking(device): | |
if is_device_mps(device): | |
return False #pytorch bug? mps doesn't support non blocking | |
if is_intel_xpu(): | |
return False | |
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) | |
return False | |
if directml_enabled: | |
return False | |
return True | |
def device_should_use_non_blocking(device): | |
if not device_supports_non_blocking(device): | |
return False | |
return False | |
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others | |
def force_channels_last(): | |
if args.force_channels_last: | |
return True | |
#TODO | |
return False | |
def cast_to_device(tensor, device, dtype, copy=False): | |
device_supports_cast = False | |
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: | |
device_supports_cast = True | |
elif tensor.dtype == torch.bfloat16: | |
if hasattr(device, 'type') and device.type.startswith("cuda"): | |
device_supports_cast = True | |
elif is_intel_xpu(): | |
device_supports_cast = True | |
non_blocking = device_should_use_non_blocking(device) | |
if device_supports_cast: | |
if copy: | |
if tensor.device == device: | |
return tensor.to(dtype, copy=copy, non_blocking=non_blocking) | |
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
else: | |
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
else: | |
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) | |
def xformers_enabled(): | |
global directml_enabled | |
global cpu_state | |
if cpu_state != CPUState.GPU: | |
return False | |
if is_intel_xpu(): | |
return False | |
if directml_enabled: | |
return False | |
return XFORMERS_IS_AVAILABLE | |
def xformers_enabled_vae(): | |
enabled = xformers_enabled() | |
if not enabled: | |
return False | |
return XFORMERS_ENABLED_VAE | |
def pytorch_attention_enabled(): | |
global ENABLE_PYTORCH_ATTENTION | |
return ENABLE_PYTORCH_ATTENTION | |
def pytorch_attention_flash_attention(): | |
global ENABLE_PYTORCH_ATTENTION | |
if ENABLE_PYTORCH_ATTENTION: | |
#TODO: more reliable way of checking for flash attention? | |
if is_nvidia(): #pytorch flash attention only works on Nvidia | |
return True | |
if is_intel_xpu(): | |
return True | |
return False | |
def force_upcast_attention_dtype(): | |
upcast = args.force_upcast_attention | |
try: | |
if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5 | |
upcast = True | |
except: | |
pass | |
if upcast: | |
return torch.float32 | |
else: | |
return None | |
def get_free_memory(dev=None, torch_free_too=False): | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
mem_free_total = psutil.virtual_memory().available | |
mem_free_torch = mem_free_total | |
else: | |
if directml_enabled: | |
mem_free_total = 1024 * 1024 * 1024 #TODO | |
mem_free_torch = mem_free_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved | |
mem_free_total = mem_free_xpu + mem_free_torch | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
if torch_free_too: | |
return (mem_free_total, mem_free_torch) | |
else: | |
return mem_free_total | |
def cpu_mode(): | |
global cpu_state | |
return cpu_state == CPUState.CPU | |
def mps_mode(): | |
global cpu_state | |
return cpu_state == CPUState.MPS | |
def is_device_type(device, type): | |
if hasattr(device, 'type'): | |
if (device.type == type): | |
return True | |
return False | |
def is_device_cpu(device): | |
return is_device_type(device, 'cpu') | |
def is_device_mps(device): | |
return is_device_type(device, 'mps') | |
def is_device_cuda(device): | |
return is_device_type(device, 'cuda') | |
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
global directml_enabled | |
if device is not None: | |
if is_device_cpu(device): | |
return False | |
if FORCE_FP16: | |
return True | |
if device is not None: | |
if is_device_mps(device): | |
return True | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if mps_mode(): | |
return True | |
if cpu_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
if torch.version.hip: | |
return True | |
props = torch.cuda.get_device_properties("cuda") | |
if props.major >= 8: | |
return True | |
if props.major < 6: | |
return False | |
fp16_works = False | |
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled | |
#when the model doesn't actually fit on the card | |
#TODO: actually test if GP106 and others have the same type of behavior | |
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] | |
for x in nvidia_10_series: | |
if x in props.name.lower(): | |
fp16_works = True | |
if fp16_works or manual_cast: | |
free_model_memory = maximum_vram_for_weights(device) | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
if props.major < 7: | |
return False | |
#FP16 is just broken on these cards | |
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] | |
for x in nvidia_16_series: | |
if x in props.name: | |
return False | |
return True | |
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
if device is not None: | |
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow | |
return False | |
if device is not None: | |
if is_device_mps(device): | |
return True | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if mps_mode(): | |
return True | |
if cpu_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
props = torch.cuda.get_device_properties("cuda") | |
if props.major >= 8: | |
return True | |
bf16_works = torch.cuda.is_bf16_supported() | |
if bf16_works or manual_cast: | |
free_model_memory = maximum_vram_for_weights(device) | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
return False | |
def soft_empty_cache(force=False): | |
global cpu_state | |
if cpu_state == CPUState.MPS: | |
torch.mps.empty_cache() | |
elif is_intel_xpu(): | |
torch.xpu.empty_cache() | |
elif torch.cuda.is_available(): | |
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
def unload_all_models(): | |
free_memory(1e30, get_torch_device()) | |
def resolve_lowvram_weight(weight, model, key): #TODO: remove | |
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.") | |
return weight | |
#TODO: might be cleaner to put this somewhere else | |
import threading | |
class InterruptProcessingException(Exception): | |
pass | |
interrupt_processing_mutex = threading.RLock() | |
interrupt_processing = False | |
def interrupt_current_processing(value=True): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
interrupt_processing = value | |
def processing_interrupted(): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
return interrupt_processing | |
def throw_exception_if_processing_interrupted(): | |
global interrupt_processing | |
global interrupt_processing_mutex | |
with interrupt_processing_mutex: | |
if interrupt_processing: | |
interrupt_processing = False | |
raise InterruptProcessingException() | |