Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from . import model_base | |
from . import utils | |
from . import sd1_clip | |
from . import sdxl_clip | |
import comfy.text_encoders.sd2_clip | |
import comfy.text_encoders.sd3_clip | |
import comfy.text_encoders.sa_t5 | |
import comfy.text_encoders.aura_t5 | |
import comfy.text_encoders.hydit | |
import comfy.text_encoders.flux | |
from . import supported_models_base | |
from . import latent_formats | |
from . import diffusers_convert | |
class SD15(supported_models_base.BASE): | |
unet_config = { | |
"context_dim": 768, | |
"model_channels": 320, | |
"use_linear_in_transformer": False, | |
"adm_in_channels": None, | |
"use_temporal_attention": False, | |
} | |
unet_extra_config = { | |
"num_heads": 8, | |
"num_head_channels": -1, | |
} | |
latent_format = latent_formats.SD15 | |
memory_usage_factor = 1.0 | |
def process_clip_state_dict(self, state_dict): | |
k = list(state_dict.keys()) | |
for x in k: | |
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): | |
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") | |
state_dict[y] = state_dict.pop(x) | |
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: | |
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] | |
if ids.dtype == torch.float32: | |
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() | |
replace_prefix = {} | |
replace_prefix["cond_stage_model."] = "clip_l." | |
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) | |
return state_dict | |
def process_clip_state_dict_for_saving(self, state_dict): | |
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] | |
for p in pop_keys: | |
if p in state_dict: | |
state_dict.pop(p) | |
replace_prefix = {"clip_l.": "cond_stage_model."} | |
return utils.state_dict_prefix_replace(state_dict, replace_prefix) | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) | |
class SD20(supported_models_base.BASE): | |
unet_config = { | |
"context_dim": 1024, | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"adm_in_channels": None, | |
"use_temporal_attention": False, | |
} | |
unet_extra_config = { | |
"num_heads": -1, | |
"num_head_channels": 64, | |
"attn_precision": torch.float32, | |
} | |
latent_format = latent_formats.SD15 | |
memory_usage_factor = 1.0 | |
def model_type(self, state_dict, prefix=""): | |
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction | |
k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) | |
out = state_dict.get(k, None) | |
if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. | |
return model_base.ModelType.V_PREDICTION | |
return model_base.ModelType.EPS | |
def process_clip_state_dict(self, state_dict): | |
replace_prefix = {} | |
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format | |
replace_prefix["cond_stage_model.model."] = "clip_h." | |
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) | |
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.") | |
return state_dict | |
def process_clip_state_dict_for_saving(self, state_dict): | |
replace_prefix = {} | |
replace_prefix["clip_h"] = "cond_stage_model.model" | |
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) | |
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) | |
return state_dict | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(comfy.text_encoders.sd2_clip.SD2Tokenizer, comfy.text_encoders.sd2_clip.SD2ClipModel) | |
class SD21UnclipL(SD20): | |
unet_config = { | |
"context_dim": 1024, | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"adm_in_channels": 1536, | |
"use_temporal_attention": False, | |
} | |
clip_vision_prefix = "embedder.model.visual." | |
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} | |
class SD21UnclipH(SD20): | |
unet_config = { | |
"context_dim": 1024, | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"adm_in_channels": 2048, | |
"use_temporal_attention": False, | |
} | |
clip_vision_prefix = "embedder.model.visual." | |
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} | |
class SDXLRefiner(supported_models_base.BASE): | |
unet_config = { | |
"model_channels": 384, | |
"use_linear_in_transformer": True, | |
"context_dim": 1280, | |
"adm_in_channels": 2560, | |
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], | |
"use_temporal_attention": False, | |
} | |
latent_format = latent_formats.SDXL | |
memory_usage_factor = 1.0 | |
def get_model(self, state_dict, prefix="", device=None): | |
return model_base.SDXLRefiner(self, device=device) | |
def process_clip_state_dict(self, state_dict): | |
keys_to_replace = {} | |
replace_prefix = {} | |
replace_prefix["conditioner.embedders.0.model."] = "clip_g." | |
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) | |
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") | |
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) | |
return state_dict | |
def process_clip_state_dict_for_saving(self, state_dict): | |
replace_prefix = {} | |
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") | |
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: | |
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") | |
replace_prefix["clip_g"] = "conditioner.embedders.0.model" | |
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) | |
return state_dict_g | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) | |
class SDXL(supported_models_base.BASE): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 0, 2, 2, 10, 10], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
} | |
latent_format = latent_formats.SDXL | |
memory_usage_factor = 0.7 | |
def model_type(self, state_dict, prefix=""): | |
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5 | |
self.latent_format = latent_formats.SDXL_Playground_2_5() | |
self.sampling_settings["sigma_data"] = 0.5 | |
self.sampling_settings["sigma_max"] = 80.0 | |
self.sampling_settings["sigma_min"] = 0.002 | |
return model_base.ModelType.EDM | |
elif "edm_vpred.sigma_max" in state_dict: | |
self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item()) | |
if "edm_vpred.sigma_min" in state_dict: | |
self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item()) | |
return model_base.ModelType.V_PREDICTION_EDM | |
elif "v_pred" in state_dict: | |
return model_base.ModelType.V_PREDICTION | |
else: | |
return model_base.ModelType.EPS | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device) | |
if self.inpaint_model(): | |
out.set_inpaint() | |
return out | |
def process_clip_state_dict(self, state_dict): | |
keys_to_replace = {} | |
replace_prefix = {} | |
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model" | |
replace_prefix["conditioner.embedders.1.model."] = "clip_g." | |
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) | |
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) | |
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") | |
return state_dict | |
def process_clip_state_dict_for_saving(self, state_dict): | |
replace_prefix = {} | |
keys_to_replace = {} | |
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") | |
for k in state_dict: | |
if k.startswith("clip_l"): | |
state_dict_g[k] = state_dict[k] | |
state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1)) | |
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] | |
for p in pop_keys: | |
if p in state_dict_g: | |
state_dict_g.pop(p) | |
replace_prefix["clip_g"] = "conditioner.embedders.1.model" | |
replace_prefix["clip_l"] = "conditioner.embedders.0" | |
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) | |
return state_dict_g | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) | |
class SSD1B(SDXL): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 0, 2, 2, 4, 4], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
} | |
class Segmind_Vega(SDXL): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 0, 1, 1, 2, 2], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
} | |
class KOALA_700M(SDXL): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 2, 5], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
} | |
class KOALA_1B(SDXL): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 2, 6], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
} | |
class SVD_img2vid(supported_models_base.BASE): | |
unet_config = { | |
"model_channels": 320, | |
"in_channels": 8, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], | |
"context_dim": 1024, | |
"adm_in_channels": 768, | |
"use_temporal_attention": True, | |
"use_temporal_resblock": True | |
} | |
unet_extra_config = { | |
"num_heads": -1, | |
"num_head_channels": 64, | |
"attn_precision": torch.float32, | |
} | |
clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." | |
latent_format = latent_formats.SD15 | |
sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SVD_img2vid(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
return None | |
class SV3D_u(SVD_img2vid): | |
unet_config = { | |
"model_channels": 320, | |
"in_channels": 8, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], | |
"context_dim": 1024, | |
"adm_in_channels": 256, | |
"use_temporal_attention": True, | |
"use_temporal_resblock": True | |
} | |
vae_key_prefix = ["conditioner.embedders.1.encoder."] | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SV3D_u(self, device=device) | |
return out | |
class SV3D_p(SV3D_u): | |
unet_config = { | |
"model_channels": 320, | |
"in_channels": 8, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], | |
"context_dim": 1024, | |
"adm_in_channels": 1280, | |
"use_temporal_attention": True, | |
"use_temporal_resblock": True | |
} | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SV3D_p(self, device=device) | |
return out | |
class Stable_Zero123(supported_models_base.BASE): | |
unet_config = { | |
"context_dim": 768, | |
"model_channels": 320, | |
"use_linear_in_transformer": False, | |
"adm_in_channels": None, | |
"use_temporal_attention": False, | |
"in_channels": 8, | |
} | |
unet_extra_config = { | |
"num_heads": 8, | |
"num_head_channels": -1, | |
} | |
required_keys = { | |
"cc_projection.weight": None, | |
"cc_projection.bias": None, | |
} | |
clip_vision_prefix = "cond_stage_model.model.visual." | |
latent_format = latent_formats.SD15 | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"]) | |
return out | |
def clip_target(self, state_dict={}): | |
return None | |
class SD_X4Upscaler(SD20): | |
unet_config = { | |
"context_dim": 1024, | |
"model_channels": 256, | |
'in_channels': 7, | |
"use_linear_in_transformer": True, | |
"adm_in_channels": None, | |
"use_temporal_attention": False, | |
} | |
unet_extra_config = { | |
"disable_self_attentions": [True, True, True, False], | |
"num_classes": 1000, | |
"num_heads": 8, | |
"num_head_channels": -1, | |
} | |
latent_format = latent_formats.SD_X4 | |
sampling_settings = { | |
"linear_start": 0.0001, | |
"linear_end": 0.02, | |
} | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SD_X4Upscaler(self, device=device) | |
return out | |
class Stable_Cascade_C(supported_models_base.BASE): | |
unet_config = { | |
"stable_cascade_stage": 'c', | |
} | |
unet_extra_config = {} | |
latent_format = latent_formats.SC_Prior | |
supported_inference_dtypes = [torch.bfloat16, torch.float32] | |
sampling_settings = { | |
"shift": 2.0, | |
} | |
vae_key_prefix = ["vae."] | |
text_encoder_key_prefix = ["text_encoder."] | |
clip_vision_prefix = "clip_l_vision." | |
def process_unet_state_dict(self, state_dict): | |
key_list = list(state_dict.keys()) | |
for y in ["weight", "bias"]: | |
suffix = "in_proj_{}".format(y) | |
keys = filter(lambda a: a.endswith(suffix), key_list) | |
for k_from in keys: | |
weights = state_dict.pop(k_from) | |
prefix = k_from[:-(len(suffix) + 1)] | |
shape_from = weights.shape[0] // 3 | |
for x in range(3): | |
p = ["to_q", "to_k", "to_v"] | |
k_to = "{}.{}.{}".format(prefix, p[x], y) | |
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)] | |
return state_dict | |
def process_clip_state_dict(self, state_dict): | |
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) | |
if "clip_g.text_projection" in state_dict: | |
state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1) | |
return state_dict | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.StableCascade_C(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel) | |
class Stable_Cascade_B(Stable_Cascade_C): | |
unet_config = { | |
"stable_cascade_stage": 'b', | |
} | |
unet_extra_config = {} | |
latent_format = latent_formats.SC_B | |
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] | |
sampling_settings = { | |
"shift": 1.0, | |
} | |
clip_vision_prefix = None | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.StableCascade_B(self, device=device) | |
return out | |
class SD15_instructpix2pix(SD15): | |
unet_config = { | |
"context_dim": 768, | |
"model_channels": 320, | |
"use_linear_in_transformer": False, | |
"adm_in_channels": None, | |
"use_temporal_attention": False, | |
"in_channels": 8, | |
} | |
def get_model(self, state_dict, prefix="", device=None): | |
return model_base.SD15_instructpix2pix(self, device=device) | |
class SDXL_instructpix2pix(SDXL): | |
unet_config = { | |
"model_channels": 320, | |
"use_linear_in_transformer": True, | |
"transformer_depth": [0, 0, 2, 2, 10, 10], | |
"context_dim": 2048, | |
"adm_in_channels": 2816, | |
"use_temporal_attention": False, | |
"in_channels": 8, | |
} | |
def get_model(self, state_dict, prefix="", device=None): | |
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) | |
class SD3(supported_models_base.BASE): | |
unet_config = { | |
"in_channels": 16, | |
"pos_embed_scaling_factor": None, | |
} | |
sampling_settings = { | |
"shift": 3.0, | |
} | |
unet_extra_config = {} | |
latent_format = latent_formats.SD3 | |
memory_usage_factor = 1.2 | |
text_encoder_key_prefix = ["text_encoders."] | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.SD3(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
clip_l = False | |
clip_g = False | |
t5 = False | |
dtype_t5 = None | |
pref = self.text_encoder_key_prefix[0] | |
if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: | |
clip_l = True | |
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: | |
clip_g = True | |
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) | |
if t5_key in state_dict: | |
t5 = True | |
dtype_t5 = state_dict[t5_key].dtype | |
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5)) | |
class StableAudio(supported_models_base.BASE): | |
unet_config = { | |
"audio_model": "dit1.0", | |
} | |
sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03} | |
unet_extra_config = {} | |
latent_format = latent_formats.StableAudio1 | |
text_encoder_key_prefix = ["text_encoders."] | |
vae_key_prefix = ["pretransform.model."] | |
def get_model(self, state_dict, prefix="", device=None): | |
seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True) | |
seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True) | |
return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device) | |
def process_unet_state_dict(self, state_dict): | |
for k in list(state_dict.keys()): | |
if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero | |
state_dict.pop(k) | |
return state_dict | |
def process_unet_state_dict_for_saving(self, state_dict): | |
replace_prefix = {"": "model.model."} | |
return utils.state_dict_prefix_replace(state_dict, replace_prefix) | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(comfy.text_encoders.sa_t5.SAT5Tokenizer, comfy.text_encoders.sa_t5.SAT5Model) | |
class AuraFlow(supported_models_base.BASE): | |
unet_config = { | |
"cond_seq_dim": 2048, | |
} | |
sampling_settings = { | |
"multiplier": 1.0, | |
"shift": 1.73, | |
} | |
unet_extra_config = {} | |
latent_format = latent_formats.SDXL | |
vae_key_prefix = ["vae."] | |
text_encoder_key_prefix = ["text_encoders."] | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.AuraFlow(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model) | |
class HunyuanDiT(supported_models_base.BASE): | |
unet_config = { | |
"image_model": "hydit", | |
} | |
unet_extra_config = { | |
"attn_precision": torch.float32, | |
} | |
sampling_settings = { | |
"linear_start": 0.00085, | |
"linear_end": 0.018, | |
} | |
latent_format = latent_formats.SDXL | |
vae_key_prefix = ["vae."] | |
text_encoder_key_prefix = ["text_encoders."] | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.HunyuanDiT(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
return supported_models_base.ClipTarget(comfy.text_encoders.hydit.HyditTokenizer, comfy.text_encoders.hydit.HyditModel) | |
class HunyuanDiT1(HunyuanDiT): | |
unet_config = { | |
"image_model": "hydit1", | |
} | |
unet_extra_config = {} | |
sampling_settings = { | |
"linear_start" : 0.00085, | |
"linear_end" : 0.03, | |
} | |
class Flux(supported_models_base.BASE): | |
unet_config = { | |
"image_model": "flux", | |
"guidance_embed": True, | |
} | |
sampling_settings = { | |
} | |
unet_extra_config = {} | |
latent_format = latent_formats.Flux | |
memory_usage_factor = 2.8 | |
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] | |
vae_key_prefix = ["vae."] | |
text_encoder_key_prefix = ["text_encoders."] | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.Flux(self, device=device) | |
return out | |
def clip_target(self, state_dict={}): | |
pref = self.text_encoder_key_prefix[0] | |
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) | |
if t5_key in state_dict: | |
dtype_t5 = state_dict[t5_key].dtype | |
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5)) | |
class FluxSchnell(Flux): | |
unet_config = { | |
"image_model": "flux", | |
"guidance_embed": False, | |
} | |
sampling_settings = { | |
"multiplier": 1.0, | |
"shift": 1.0, | |
} | |
def get_model(self, state_dict, prefix="", device=None): | |
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device) | |
return out | |
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell] | |
models += [SVD_img2vid] | |