|
import inspect |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from diffusers.models import UNet2DModel, VQModel |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils import randn_tensor |
|
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
import copy |
|
|
|
class LDMPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
vae ([`VQModel`]): |
|
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. |
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. |
|
""" |
|
|
|
def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16): |
|
super().__init__() |
|
self.register_modules(vae=vae, unet=unet, scheduler=scheduler) |
|
self.torch_dtype = torch_dtype |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 8, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
eta: float = 0.0, |
|
num_inference_steps: int = 1000, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[Tuple, ImagePipelineOutput]: |
|
r""" |
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
Number of images to generate. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
if not isinstance(self.unet.config.sample_size,tuple): |
|
self.unet.config.sample_size = (self.unet.config.sample_size,self.unet.config.sample_size) |
|
|
|
latents = randn_tensor( |
|
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), |
|
generator=generator, |
|
) |
|
latents = latents.to(self.device).type(self.torch_dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
|
extra_kwargs = {} |
|
if accepts_eta: |
|
extra_kwargs["eta"] = eta |
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
latent_model_input = self.scheduler.scale_model_input(latents, t) |
|
|
|
noise_prediction = self.unet(latent_model_input, t).sample |
|
|
|
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample |
|
|
|
|
|
latents /= self.vae.config.scaling_factor |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
|
|
class SDMLDMPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
vae ([`VQModel`]): |
|
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. |
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. |
|
""" |
|
|
|
def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, resolution=512, resolution_type="city"): |
|
super().__init__() |
|
self.register_modules(vae=vae, unet=unet, scheduler=scheduler) |
|
self.torch_dtype = torch_dtype |
|
self.resolution = resolution |
|
self.resolution_type = resolution_type |
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
segmap = None, |
|
batch_size: int = 8, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
eta: float = 0.0, |
|
num_inference_steps: int = 1000, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
every_step_save: int = None, |
|
s: int = 1, |
|
**kwargs, |
|
) -> Union[Tuple, ImagePipelineOutput]: |
|
r""" |
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
Number of images to generate. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
|
|
if self.resolution_type == "crack": |
|
self.unet.config.sample_size = (64,64) |
|
elif self.resolution_type == "crack_256": |
|
self.unet.config.sample_size = (256,256) |
|
else: |
|
sc = 1080 // self.resolution |
|
latent_size = (self.resolution // 4, 1440 // (sc*4)) |
|
self.unet.config.sample_size = latent_size |
|
|
|
if not isinstance(self.unet.config.sample_size, tuple): |
|
self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) |
|
|
|
if segmap is None: |
|
print("Didn't inpute any segmap, use the empty as the input") |
|
segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]) |
|
segmap = segmap.to(self.device).type(self.torch_dtype) |
|
latents = randn_tensor( |
|
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), |
|
generator=generator, |
|
) |
|
latents = latents.to(self.device).type(self.torch_dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
self.scheduler.set_timesteps(num_inference_steps=num_inference_steps) |
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
|
extra_kwargs = {} |
|
if accepts_eta: |
|
extra_kwargs["eta"] = eta |
|
|
|
step_latent = [] |
|
learn_sigma = True if hasattr(self.scheduler, "variance_type") else False |
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latents, t) |
|
|
|
noise_prediction = self.unet(latent_model_input, segmap, t).sample |
|
|
|
|
|
|
|
if learn_sigma and "learn" in self.scheduler.variance_type: |
|
model_pred, var_pred = torch.split(noise_prediction, latents.shape[1], dim=1) |
|
else: |
|
model_pred = noise_prediction |
|
if s > 1.0: |
|
model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample |
|
if learn_sigma and "learn" in self.scheduler.variance_type: |
|
model_output_zero,_ = torch.split(model_output_zero, latents.shape[1], dim=1) |
|
model_pred = model_pred + s * (model_pred - model_output_zero) |
|
if learn_sigma and "learn" in self.scheduler.variance_type: |
|
recombined = torch.cat((model_pred, var_pred), dim=1) |
|
|
|
if learn_sigma and "learn" in self.scheduler.variance_type: |
|
latents = self.scheduler.step(recombined, t, latents, **extra_kwargs).prev_sample |
|
else: |
|
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample |
|
|
|
if every_step_save is not None: |
|
if (i+1) % every_step_save == 0: |
|
step_latent.append(copy.deepcopy(latents)) |
|
|
|
|
|
if every_step_save is not None: |
|
image = [] |
|
for i, l in enumerate(step_latent): |
|
l /= self.vae.config.scaling_factor |
|
|
|
l = self.vae.decode(l, segmap) |
|
l = (l / 2 + 0.5).clamp(0, 1) |
|
l = l.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
l = self.numpy_to_pil(l) |
|
image.append(l) |
|
else: |
|
latents /= self.vae.config.scaling_factor |
|
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
|
|
class SDMPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
vae ([`VQModel`]): |
|
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. |
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. |
|
""" |
|
|
|
def __init__(self, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, vae=None): |
|
super().__init__() |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
self.torch_dtype = torch_dtype |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
segmap = None, |
|
batch_size: int = 8, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
eta: float = 0.0, |
|
num_inference_steps: int = 1000, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
s: int = 1, |
|
**kwargs, |
|
) -> Union[Tuple, ImagePipelineOutput]: |
|
r""" |
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
Number of images to generate. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
self.unet.config.sample_size = (270,360) |
|
if not isinstance(self.unet.config.sample_size, tuple): |
|
self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) |
|
|
|
if segmap is None: |
|
print("Didn't inpute any segmap, use the empty as the input") |
|
segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]) |
|
segmap = segmap.to(self.device).type(self.torch_dtype) |
|
latents = randn_tensor( |
|
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), |
|
generator=generator, |
|
) |
|
|
|
latents = latents.to(self.device).type(self.torch_dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
|
extra_kwargs = {} |
|
if accepts_eta: |
|
extra_kwargs["eta"] = eta |
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
latent_model_input = self.scheduler.scale_model_input(latents, t) |
|
|
|
noise_prediction = self.unet(latent_model_input, segmap, t).sample |
|
|
|
|
|
|
|
if s > 1.0: |
|
model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample |
|
noise_prediction[:, :3] = model_output_zero[:, :3] + s * (noise_prediction[:, :3] - model_output_zero[:, :3]) |
|
|
|
|
|
|
|
|
|
|
|
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample |
|
|
|
|
|
|
|
|
|
image = latents |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
|