File size: 6,817 Bytes
69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 b9b6700 9f253d2 69cffc7 b9b6700 9f253d2 69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 811f398 69cffc7 40317f4 69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 9f253d2 69cffc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import spaces
import gradio as gr
import torch
import torchvision as tv
import random, os
from diffusers import StableVideoDiffusionPipeline
from PIL import Image
from glob import glob
from typing import Optional
from tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
from utils import load_lora_weights, save_video
# LOCAL = True
LOCAL = False
if LOCAL:
svd_path = '/share2/duanyuxuan/diff_playground/diffusers_models/stable-video-diffusion-img2vid-xt-1-1'
lora_file_path = '/share2/duanyuxuan/diff_playground/SVD-TDD/svd-xt-1-1_tdd_lora_weights.safetensors'
else:
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
lora_repo_path = 'RED-AIGC/TDD'
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
if torch.cuda.is_available():
noise_scheduler = TDDSVDStochasticIterativeScheduler(num_train_timesteps = 250, sigma_min = 0.002, sigma_max = 700.0, sigma_data = 1.0,
s_noise = 1.0, rho = 7, clip_denoised = False)
pipeline = StableVideoDiffusionPipeline.from_pretrained(svd_path, scheduler = noise_scheduler, torch_dtype = torch.float16, variant = "fp16").to('cuda')
if LOCAL:
load_lora_weights(pipeline.unet, lora_file_path)
else:
load_lora_weights(pipeline.unet, lora_repo_path, weight_name = lora_weight_name)
max_64_bit_int = 2**63 - 1
@spaces.GPU
def sample(
image: Image,
seed: Optional[int] = 1,
randomize_seed: bool = False,
num_inference_steps: int = 4,
eta: float = 0.3,
min_guidance_scale: float = 1.0,
max_guidance_scale: float = 1.0,
fps: int = 7,
width: int = 512,
height: int = 512,
num_frames: int = 25,
motion_bucket_id: int = 127,
output_folder: str = "outputs_gradio",
):
pipeline.scheduler.set_eta(eta)
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
with torch.autocast("cuda"):
frames = pipeline(
image, height = height, width = width,
num_inference_steps = num_inference_steps,
min_guidance_scale = min_guidance_scale,
max_guidance_scale = max_guidance_scale,
num_frames = num_frames, fps = fps, motion_bucket_id = motion_bucket_id,
decode_chunk_size = 8,
noise_aug_strength = 0.02,
generator = generator,
).frames[0]
save_video(frames, video_path, fps = fps, quality = 5.0)
torch.manual_seed(seed)
return video_path, seed
def preprocess_image(image, height = 512, width = 512):
image = image.convert('RGB')
if image.size[0] != image.size[1]:
image = tv.transforms.functional.pil_to_tensor(image)
image = tv.transforms.functional.center_crop(image, min(image.shape[-2:]))
image = tv.transforms.functional.to_pil_image(image)
image = image.resize((width, height))
return image
css = """
h1 {
text-align: center;
display:block;
}
.gradio-container {
max-width: 70.5rem !important;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown(
"""
# Stable Video Diffusion distilled by ✨Target-Driven Distillation✨
Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.
Besides, TDD is also available for distilling video generation models. This space presents TDD-distilled [SVD-xt 1.1](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1).
[**Project Page**](https://redaigc.github.io/TDD/) **|** [**Paper**](https://arxiv.org/abs/2409.01347) **|** [**Code**](https://github.com/RedAIGC/Target-Driven-Distillation) **|** [**Model**](https://huggingface.co/RED-AIGC/TDD) **|** [🤗 **TDD-SDXL Demo**](https://huggingface.co/spaces/RED-AIGC/TDD) **|** [🤗 **TDD-SVD Demo**](https://huggingface.co/spaces/RED-AIGC/SVD-TDD)
The codes of this space are built on [AnimateLCM-SVD](https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD) and we acknowledge their contribution.
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
generate_btn = gr.Button("Generate")
video = gr.Video()
with gr.Accordion("Options", open = True):
seed = gr.Slider(
label="Seed",
value=1,
randomize=False,
minimum=0,
maximum=max_64_bit_int,
step=1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
min_guidance_scale = gr.Slider(
label="Min guidance scale",
info="min strength of classifier-free guidance",
value=1.0,
minimum=1.0,
maximum=1.5,
)
max_guidance_scale = gr.Slider(
label="Max guidance scale",
info="max strength of classifier-free guidance, it should not be less than Min guidance scale",
value=1.0,
minimum=1.0,
maximum=3.0,
)
num_inference_steps = gr.Slider(
label="Num inference steps",
info="steps for inference",
value=4,
minimum=4,
maximum=8,
step=1,
)
eta = gr.Slider(
label = "Eta",
info = "the value of gamma in gamma-sampling",
value = 0.3,
minimum = 0.0,
maximum = 1.0,
step = 0.1,
)
image.upload(fn = preprocess_image, inputs = image, outputs = image, queue = False)
generate_btn.click(
fn = sample,
inputs = [
image,
seed,
randomize_seed,
num_inference_steps,
eta,
min_guidance_scale,
max_guidance_scale,
],
outputs = [video, seed],
api_name = "video",
)
# safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown)
# gr.Examples(
# examples=[
# ["examples/ipadapter_cat.jpg"],
# ],
# inputs=[image],
# outputs=[video, seed],
# fn=sample,
# cache_examples=True,
# )
if __name__ == "__main__":
if LOCAL:
demo.queue().launch(share=True, server_name='0.0.0.0')
else:
demo.queue(api_open=False).launch(show_api=False) |