File size: 123,388 Bytes
2cba4ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 |
#!/usr/bin/env python3
__author__ = "Jérôme Louradour"
__credits__ = ["Jérôme Louradour"]
__license__ = "GPLv3"
__version__ = "1.14.2"
# Set some environment variables
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' # Remove warning "This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)..."
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' # GPU in the right order
# Whisper and Torch
import whisper
import torch
import torch.nn.functional as F
from importlib.util import find_spec
if find_spec("intel_extension_for_pytorch") is not None:
try:
import intel_extension_for_pytorch
except ImportError:
pass
# For alignment
import numpy as np
import dtw
# from scipy.signal import medfilt as median_filter
from scipy.ndimage import median_filter # faster owing to https://github.com/openai/whisper/commit/f0083e7eb20d032390e42f6f6039947fa8669c93
from scipy.signal import find_peaks
# Additional
import string
import csv
import sys
import gzip, base64
import copy
import re
import shutil
# Constant variables
from whisper.utils import format_timestamp
from whisper.audio import N_FRAMES, HOP_LENGTH, SAMPLE_RATE # 3000, 160, 16000
AUDIO_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # 320
AUDIO_TIME_PER_TOKEN = AUDIO_SAMPLES_PER_TOKEN / SAMPLE_RATE # 0.02 (sec)
SEGMENT_DURATION = N_FRAMES * HOP_LENGTH / SAMPLE_RATE # 30.0 (sec)
# Logs
import logging
logger = logging.getLogger("whisper_timestamped")
USE_EFFICIENT_BY_DEFAULT = True
TRUST_WHISPER_TIMESTAMP_BY_DEFAULT = True
DISFLUENCY_MARK = "[*]"
try:
whisper_version = whisper.__version__
except NameError:
whisper_version = ""
WHIPSER_GE_20230306 = whisper_version >= "20230306"
WHIPSER_GE_20230308 = whisper_version >= "20230308"
def transcribe_timestamped(
# Main Whisper options
model,
audio,
language=None,
task="transcribe",
# Additional options for word alignment
remove_punctuation_from_words=False,
compute_word_confidence=True,
include_punctuation_in_confidence=False,
refine_whisper_precision=0.5,
min_word_duration=0.02, # Was 0.04 before 1.11
plot_word_alignment=False,
word_alignement_most_top_layers=None, # Was 6 before 1.9
remove_empty_words=False,
# Reproducibility
seed=1234,
vad=False,
detect_disfluencies=False,
trust_whisper_timestamps=TRUST_WHISPER_TIMESTAMP_BY_DEFAULT,
naive_approach=False,
# Other Whisper options
temperature=0.0 if USE_EFFICIENT_BY_DEFAULT else (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
best_of=None,
beam_size=None,
patience=None,
length_penalty=None,
compression_ratio_threshold=2.4,
logprob_threshold=-1.0,
no_speech_threshold=0.6,
fp16=None,
condition_on_previous_text=True,
initial_prompt=None,
suppress_tokens="-1",
sample_len=None,
verbose=False,
):
"""
Transcribe an audio file using Whisper
Parameters
----------
model: Whisper
The Whisper model instance.
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform in 16kHz.
language: str
The language to use for the transcription. If None, the language is detected automatically.
task: str
The task to perform: either "transcribe" or "translate".
remove_punctuation_from_words: bool
If False, words will be glued with the next punctuation mark (if any).
If True, there will be no punctuation mark in the `words[:]["text"]` list.
It only affects these strings; This has no influence on the computation of the word confidence, whatever the value of `include_punctuation_in_confidence` is.
include_punctuation_in_confidence: bool
Whether to include proba of punctuation in the computation of the (previous) word confidence.
compute_word_confidence: bool
Whether to compute word confidence.
If True, a finer confidence for each segment will be computed as well.
vad: bool or str in ["silero", "silero:3.1", "auditok"]
Whether to perform voice activity detection (VAD) on the audio file, to remove silent parts before transcribing with Whisper model.
This should decrease hallucinations from the Whisper model.
When set to True, the default VAD algorithm is used (silero).
When set to a string, the corresponding VAD algorithm is used (silero, silero:3.1 or auditok).
Note that the library for the corresponding VAD algorithm must be installed.
detect_disfluencies: bool
Whether to detect disfluencies (i.e. hesitations, filler words, repetitions, corrections, etc.) that Whisper model might have omitted in the transcription.
This should make the word timestamp prediction more accurate.
And probable disfluencies will be marked as special words "[*]".
trust_whisper_timestamps: bool
Whether to rely on Whisper's timestamps to get approximative first estimate of segment positions (up to refine_whisper_precision).
refine_whisper_precision: float
How much can we refine Whisper segment positions, in seconds. Must be a multiple of 0.02.
min_word_duration: float
Minimum duration of a word, in seconds. If a word is shorter than this, timestamps will be adjusted.
plot_word_alignment: bool
Whether to plot the word alignment for each segment. matplotlib must be installed to use this option.
remove_empty_words: bool
Whether to remove words with no duration occuring at the end of segments (probable Whisper hallucinations).
seed: int
Random seed to use for temperature sampling, for the sake of reproducibility.
Choose None for unpredictable randomness.
naive_approach: bool
Force the naive approach that consists in decoding twice the audio file, once to get the transcritpion and once with the decoded tokens to get the alignment.
Note that this approach is used anyway when beam_size is not None and/or when the temperature is a list with more than one element.
temperature: float
Temperature for sampling.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed.
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed.
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent.
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
initial_prompt: str
Optional text to provide as a prompt for the first window.
suppress_tokens: str
Comma-separated list of token ids to suppress during sampling;
'-1' will suppress most special characters except common punctuations.
verbose: bool
Whether to display the text being decoded to the console. If True, displays all the details,
If False, displays minimal details. If None, does not display anything
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
"""
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Check input options
assert refine_whisper_precision >= 0 and refine_whisper_precision / AUDIO_TIME_PER_TOKEN == round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN), f"refine_whisper_precision must be a positive multiple of {AUDIO_TIME_PER_TOKEN}"
refine_whisper_precision_nframes = round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN)
assert min_word_duration >= 0, f"min_word_duration must be a positive number"
assert word_alignement_most_top_layers is None or word_alignement_most_top_layers > 0, f"word_alignement_most_top_layers must be a strictly positive number"
if isinstance(temperature, (list, tuple)) and len(temperature) == 1:
temperature = temperature[0]
if isinstance(temperature, (list, tuple)):
# temperature fallback
naive_approach = True
elif temperature > 0 and best_of is not None and best_of > 1:
naive_approach = True
if beam_size is not None:
# beam-search
naive_approach = True
# Input options
vad = check_vad_method(vad)
if isinstance(model, str):
model = load_model(model)
if fp16 is None:
fp16 = model.device != torch.device("cpu")
# Safety check
input_stride = N_FRAMES // model.dims.n_audio_ctx
time_precision = input_stride * HOP_LENGTH / SAMPLE_RATE
assert time_precision == AUDIO_TIME_PER_TOKEN
alignment_heads = get_alignment_heads(model) if word_alignement_most_top_layers is None else None
if alignment_heads is None and word_alignement_most_top_layers is None:
word_alignement_most_top_layers = 6
alignment_options = dict(
remove_punctuation_from_words=remove_punctuation_from_words,
compute_word_confidence=compute_word_confidence,
include_punctuation_in_confidence=include_punctuation_in_confidence,
detect_disfluencies=detect_disfluencies,
refine_whisper_precision_nframes=refine_whisper_precision_nframes,
plot_word_alignment=plot_word_alignment,
word_alignement_most_top_layers=word_alignement_most_top_layers,
alignment_heads=alignment_heads,
)
whisper_options = dict(
language=language,
task=task,
fp16=fp16,
temperature=temperature,
best_of=best_of,
beam_size=beam_size,
patience=patience,
length_penalty=length_penalty,
condition_on_previous_text=condition_on_previous_text,
initial_prompt=initial_prompt,
suppress_tokens=suppress_tokens,
sample_len=sample_len,
verbose=verbose if (not vad or verbose is not True) else False,
)
other_options = dict(
no_speech_threshold=no_speech_threshold,
logprob_threshold=logprob_threshold,
compression_ratio_threshold=compression_ratio_threshold,
)
if vad:
audio = get_audio_tensor(audio)
audio, convert_timestamps = remove_non_speech(audio, method=vad, plot=plot_word_alignment)
global num_alignment_for_plot
num_alignment_for_plot = 0
if naive_approach:
(transcription, words) = _transcribe_timestamped_naive(model, audio,
min_word_duration=0.0, # Was 0.04 before 1.11
trust_whisper_timestamps=trust_whisper_timestamps,
**alignment_options, **whisper_options, **other_options)
else:
(transcription, words) = _transcribe_timestamped_efficient(model, audio,
trust_whisper_timestamps=trust_whisper_timestamps,
**alignment_options, **whisper_options, **other_options)
if remove_empty_words:
# Remove words with empty duration happening at the end of segments, to remove some hallucinations
transcription, words = remove_last_null_duration_words(transcription, words, recompute_text=True)
# Refine word positions
ensure_increasing_positions(words, min_duration=min_word_duration if trust_whisper_timestamps else 0)
# Combine words and segments
whisper_segments = transcription["segments"]
for word in words:
if verbose and not naive_approach and not vad:
print_timestamped(word)
word.pop("tokens")
word.pop("tokens_indices")
if "avg_logprob_reliable" in word:
word.pop("avg_logprob_reliable")
idx_segment = word.pop("idx_segment")
assert idx_segment < len(whisper_segments), f"Fatal error: Got unexpected segment index {idx_segment} >= {len(whisper_segments)}"
segment = whisper_segments[idx_segment]
if "words" in segment:
segment["words"].append(word)
else:
segment["words"] = [word]
if refine_whisper_precision:
segment["start"] = word["start"]
if refine_whisper_precision:
segment["end"] = word["end"]
if vad:
# Recompute timestamps to match the original audio
for segment in whisper_segments:
for word in segment.get("words", []):
word["start"], word["end"] = convert_timestamps(word["start"], word["end"])
if verbose:
print_timestamped(word)
if refine_whisper_precision and len(segment.get("words", [])):
segment["start"] = segment["words"][0]["start"]
segment["end"] = segment["words"][-1]["end"]
else:
segment["start"], segment["end"] = convert_timestamps(segment["start"], segment["end"])
return transcription
def _transcribe_timestamped_efficient(
model,
audio,
remove_punctuation_from_words,
compute_word_confidence,
include_punctuation_in_confidence,
refine_whisper_precision_nframes,
alignment_heads,
plot_word_alignment,
word_alignement_most_top_layers,
detect_disfluencies,
trust_whisper_timestamps,
use_timestamps_for_alignment = True,
# Whisper specific options
**whisper_options,
):
# Get options
sample_len = whisper_options["sample_len"]
temperature = whisper_options["temperature"]
no_speech_threshold = whisper_options["no_speech_threshold"]
logprob_threshold = whisper_options["logprob_threshold"]
verbose = whisper_options["verbose"]
# Note: "on-the-fly" verbose is not implementable in the current state (we don't know the absolute position of the current chunk). See issue #18
verbose_bugged = False
whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"] # We will print intermediate results ourselves
logit_filters = get_logit_filters(model, whisper_options)
language = whisper_options["language"]
tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language)
max_sample_len = sample_len or model.dims.n_text_ctx // 2
n_ctx = model.dims.n_text_ctx
debug = logger.getEffectiveLevel() >= logging.DEBUG
word_alignement_most_top_layers = float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers
# The main outcome
timestamped_word_segments = [] # list of timestamped word segments that have been collected so far
# Main variables to be accumulated
segment_tokens = [[]] # list of lists of token indices that have been collected so far (one list per segment)
segment_attweights = [[] for _ in range(min(word_alignement_most_top_layers, len(model.decoder.blocks)))]
# attention weights on the last segments
segment_avglogprobs = [] # average log probability for each segment (actually of the corresponding chunk, as computed by whisper)
segment_logprobs = [] # token log probabilities for each segment
# Variables related to options that can skip some segments
sot_index = None # index of the SOT token in the current set of processed tokens
no_speech_prob = None # no speech probability for the current 30 sec chunk
chunk_logprobs = [] # log probabilities for the current 30 sec chunk
chunk_tokens = [] # tokens for the current 30 sec chunk (list of Torch tensors)
chunk_tokens_nosot = [] # tokens for the current 30 sec chunk, without the SOT tokens (list of indices)
last_chunk_token = None # last token of the current chunk, that may be needed for corner cases
last_token_fallback = None # last token to use as a fallback if the model gets stuck
has_started = False # whether we have started decoding
mfcc = None # MFCC features for the current 30 sec chunk
new_mfcc = None #
num_inference_steps = 0 # number of inference steps performed so far (for debugging only)
language_probs = None # language detection probabilities
def is_sot(curr_tokens):
return curr_tokens is None or len(curr_tokens) > 1 or curr_tokens[0] == tokenizer.sot
def has_reached_decoding_limit():
n = len(chunk_tokens_nosot) + 1
m = n + (len(chunk_tokens[0]) if len(chunk_tokens) > 0 else 0)
return n + 1 >= max_sample_len or m > n_ctx
def reset(add_segment, keep_last_token=True):
""" Reset the list of tokens for the current speech segment, and corresponding cross-attention weights """
nonlocal segment_tokens, segment_attweights
if add_segment:
if keep_last_token:
segment_tokens.append([segment_tokens[-1][-1]])
segment_attweights = [w[-1:] for w in segment_attweights]
else:
segment_tokens.append([])
segment_attweights = [[] for w in segment_attweights]
segment_tokens[-2].pop(0)
elif len(segment_tokens[-1]) > 0:
if debug:
logger.debug(f"Reset last segment: {tokenizer.decode_with_timestamps(segment_tokens[-1])}")
segment_tokens[-1] = []
segment_attweights = [[] for w in segment_attweights]
saw_consecutive_timestamps = False
def must_flush_segment(curr_tokens):
""" Return whether or not the previously collected tokens must be used to add a new speech segment """
nonlocal segment_tokens, saw_consecutive_timestamps, chunk_tokens_nosot
if not is_sot(curr_tokens):
is_timestamp = curr_tokens[0] >= tokenizer.timestamp_begin
is_previous_timestamp = segment_tokens[-1][-1] >= tokenizer.timestamp_begin if len(segment_tokens[-1]) > 0 else False
consecutive_timestamps = is_timestamp and is_previous_timestamp
if consecutive_timestamps:
saw_consecutive_timestamps = True
return consecutive_timestamps
else: # Several tokens as a prompt or must flush last segments
must_flush = len(segment_tokens[-1]) > 1 and not saw_consecutive_timestamps
if not must_flush and WHIPSER_GE_20230306: # If the last token is a timestamp, the last segment is used
if last_chunk_token is None:
must_flush = (len(segment_tokens[-1]) > 2 and segment_tokens[-1][-1] >= tokenizer.timestamp_begin)
else:
must_flush = (last_chunk_token >= tokenizer.timestamp_begin)
if not must_flush and trust_whisper_timestamps:
# Discard the end of the last transcription
reset(False)
saw_consecutive_timestamps = False
return must_flush
index_begin_30sec_chunck = 0
def get_index_begin_30sec_chunck(curr_tokens):
nonlocal index_begin_30sec_chunck, has_started
if is_sot(curr_tokens) and has_started:
if trust_whisper_timestamps:
res = index_begin_30sec_chunck
index_begin_30sec_chunck = len(segment_tokens)-1
else:
res = len(segment_tokens)-1
return res
def align_last_segment(curr_tokens=None):
nonlocal segment_tokens, segment_attweights, timestamped_word_segments, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps
if debug and trust_whisper_timestamps:
logger.debug(f"Add segment {len(timestamped_word_segments)+1} at step {num_inference_steps}:\n\t{tokenizer.decode_with_timestamps(segment_tokens[-1])}")
tokens = segment_tokens[-1][1:]
# When the decoding hit the max limit (number of tokens) -- usually when the language model gets stuck --
# then we have to recover the last token from what is send to the decoder
unfinished_decoding = has_reached_decoding_limit()
last_is_not_timestamp = len(tokens) and tokens[-1] < tokenizer.timestamp_begin
last_token_reliable = True
if unfinished_decoding:
logger.debug(f"WARNING: decoding hit the max limit for segment {segment_tokens[-1]} (It usually happens when the language model gets stuck)")
# The last token chosen is in the prompt for the new chunk
if curr_tokens is not None and curr_tokens[0] == tokenizer.sot_prev:
index_sot = (curr_tokens == tokenizer.sot).nonzero(as_tuple=True)
assert len(index_sot) == 1
index_sot = index_sot[0].item()
assert index_sot > 0
last_token_fallback = curr_tokens[index_sot-1].item()
logger.debug(f" Guessed last token from the prompt for the new chunk: {last_token_fallback}")
# Fallback for the last segment, or without prompt: Assume greedy decoding
else:
last_token_fallback = torch.argmax(chunk_logprobs[-1]).item() if last_chunk_token is None else last_chunk_token
last_token_reliable = (temperature == 0)
logger.debug(f" Guess last token using probas (assuming greedy decoding): {last_token_fallback}")
if debug:
logger.debug(f"WARNING: also add last token: {tokenizer.decode_with_timestamps([last_token_fallback])}")
tokens.append(last_token_fallback)
segment_tokens[-1].append(last_token_fallback)
attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights]
last_logprobs = chunk_logprobs[-1]
elif last_is_not_timestamp: # <eot> was emitted early, without a timestamp before
logger.debug(f"WARNING: end timestamp not produced. Adding <|endoftext|>")
tokens.append(tokenizer.eot)
segment_tokens[-1].append(tokenizer.eot)
attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights]
last_logprobs = chunk_logprobs[-1]
else:
attention_weights = [torch.cat(w[:-1], dim=-2) for w in segment_attweights]
last_logprobs = chunk_logprobs[-2]
# Check prediction of last token
end_token = tokens[-1]
if end_token >= tokenizer.timestamp_begin:
start_token = tokens[0]
assert start_token >= tokenizer.timestamp_begin
# If Whisper prediction of the end is obviously wrong, we predict it again (constrained)
if end_token <= start_token:
new_end_token = last_logprobs[start_token+1:].argmax() + start_token + 1
tokens[-1] = new_end_token.item()
if debug:
logger.debug(f"Re-estimated end token {tokenizer.decode_with_timestamps([new_end_token])} (was {tokenizer.decode_with_timestamps([end_token])}) to be after start token {tokenizer.decode_with_timestamps([start_token])}")
if len(tokens) <= 1:
# Corner case: nothing in between timestamps
ws = []
else:
ws = perform_word_alignment(
tokens,
attention_weights,
tokenizer,
use_space=should_use_space(language),
alignment_heads=alignment_heads,
remove_punctuation_from_words=remove_punctuation_from_words,
refine_whisper_precision_nframes=refine_whisper_precision_nframes,
detect_disfluencies=detect_disfluencies,
unfinished_decoding=unfinished_decoding,
mfcc=mfcc,
plot=plot_word_alignment,
debug=debug,
)
add_segment = len(ws) > 0
if add_segment:
timestamped_word_segments.append(ws)
else:
logger.debug(f"Not added!")
reset(add_segment, not is_sot(curr_tokens))
return add_segment, unfinished_decoding, last_token_reliable
def may_flush_segment(curr_tokens = None):
""" Add a speech segment with the new tokens if necessary.
May also remove the last collected segments if filtered out by Whisper (no_speech_prob <= no_speech_threshold)
"""
nonlocal segment_tokens, segment_attweights, timestamped_word_segments, segment_logprobs, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps, last_chunk_token
# Check if a new segment should be added
unfinished_decoding = False
last_token_reliable = True
if must_flush_segment(curr_tokens) and trust_whisper_timestamps:
_, unfinished_decoding, last_token_reliable = align_last_segment(curr_tokens)
i_start = get_index_begin_30sec_chunck(curr_tokens)
# All segments from previous 30sec chunck have been collected
if i_start is not None:
if not trust_whisper_timestamps:
tokens = torch.Tensor(segment_tokens[-1]).int()
idx_task = torch.where(tokens==tokenizer.sot_sequence[-1])[0][0].item() # index of <|transcribe|>
is_special = tokens.ge(tokenizer.eot)
# Remove prompt
is_special[:idx_task] = True
# Keep begin timestamp
is_special[idx_task:idx_task+2] = False
is_timestamp = tokens.ge(tokenizer.timestamp_begin)
consecutive = torch.where(is_timestamp[1:] & is_timestamp[:-1])[0]
if (WHIPSER_GE_20230306 or has_reached_decoding_limit()) and (
(is_timestamp[-1] and not is_timestamp[-2]) if last_chunk_token is None else
last_chunk_token >= tokenizer.timestamp_begin and not is_timestamp[-2]
):
consecutive = torch.cat([consecutive, torch.Tensor([len(tokens)-1]).int()])
last_is_timestamp = True
if len(consecutive):
# Remove last tokens
is_special[consecutive[-1]+1:] = True
# Keep end timestamp
is_special[consecutive[-1]] = False
elif is_timestamp[-1]:
# Keep end timestamp
is_special[-1] = False
else:
last_is_timestamp = False
if use_timestamps_for_alignment and len(consecutive):
# Keep all timestamps
is_special[idx_task+2:consecutive[-1]] = False
# Do remove what has to be removed
is_next_achar = ~torch.cat([is_special[1:], torch.Tensor([False]).bool()])
for i, weights in enumerate(segment_attweights):
assert len(weights) == len(tokens), f"{len(weights)} attention weights != {len(tokens)}"
# We must remove attention weights used to predict timestamp tokens
segment_attweights[i] = [w for s, w in zip(is_next_achar, weights) if s]
tokens_filtered = tokens[~is_special]
assert len(segment_attweights[0]) == len(tokens_filtered), f"{len(segment_attweights[0])} attention weights != {len(tokens_filtered)} "
# Replace first and last timestamp
orig_start, orig_end = tokens_filtered[1].item(), tokens_filtered[-1].item()
tokens_filtered[1] = tokenizer.timestamp_begin # <|0.00|>
if last_is_timestamp:
tokens_filtered[-1] = tokenizer.timestamp_begin + N_FRAMES // 2 # <|30.00|>
segment_tokens[-1] = tokens_filtered.tolist()
# Do alignement
added, unfinished_decoding, last_token_reliable = align_last_segment()
# Re-split into segments (if necessary)
if added:
if len(consecutive) > 1:
segments_timestamped_concat = timestamped_word_segments[-1]
new_segments_timestamped = []
new_segment_tokens = []
start = idx_task+1
i_word = 0
for i, end in enumerate(consecutive):
end = end.item()
new_segment_tokens.append(tokens[start:end+1].tolist())
if debug:
logger.debug(f"Add segment {len(timestamped_word_segments)+i}:\n\t{tokenizer.decode_with_timestamps(new_segment_tokens[-1])}")
total_length = end - start - 1
start = end+1
length = 0
new_segments_timestamped.append([])
while length < total_length:
if not use_timestamps_for_alignment and i_word == len(segments_timestamped_concat):
# This can happen in the case of "..."
assert total_length == 1 and i == len(consecutive)-1, "Unexpected situation!"
break
assert i_word < len(segments_timestamped_concat), f"i_word={i_word} < len(segments_timestamped_concat)={len(segments_timestamped_concat)}"
word = segments_timestamped_concat[i_word]
new_segments_timestamped[-1].append(word)
length += len(word["tokens_indices"])
i_word += 1
# This can be non zero, when a punctuation (alone in a segment) is glued to the previous segment
if use_timestamps_for_alignment:
assert length == total_length, f"length={length} != total_length={total_length}"
elif length > total_length:
delta = length - total_length
word = new_segments_timestamped[-1][-1]
word_tokindices = word["tokens_indices"]
word_tokens = word["tokens"]
word["tokens_indices"] = word_tokindices[:-delta]
word["tokens"] = word_tokens[:-delta]
word["word"] = "".join(word_tokens[:-delta])
i_word -= 1
t = segments_timestamped_concat[i_word]["end"]
segments_timestamped_concat[i_word] = dict(
text="".join(word_tokens[-delta:]),
start=t, end=t, # Word without timestamp
tokens=word_tokens[-delta:],
tokens_indices=word_tokindices[-delta:],
)
assert i_word == len(segments_timestamped_concat)
segment_tokens = segment_tokens[:-2] + new_segment_tokens + [segment_tokens[-1]]
timestamped_word_segments = timestamped_word_segments[:-1] + new_segments_timestamped
else:
# Recover start and end token
segment = segment_tokens[-2]
tokenizer.decode_with_timestamps([orig_start,orig_end])
segment[0] = orig_start
if last_is_timestamp:
segment[-1] = orig_end
if debug:
logger.debug(f"Add segment {len(timestamped_word_segments)}:\n\t{tokenizer.decode_with_timestamps(segment)}")
if unfinished_decoding:
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable
reset(False)
mfcc = new_mfcc
n_segments = len(segment_tokens)-1
# Get word confidence and/or check if previous segments shoud have been skipped
should_skip = False
if compute_word_confidence or no_speech_threshold is not None:
# no voice activity check
should_skip = (no_speech_prob > no_speech_threshold) if (no_speech_threshold is not None) else False
if compute_word_confidence or (should_skip and logprob_threshold is not None):
n = len(chunk_logprobs)
if n == len(chunk_tokens_nosot):
chunk_tokens_nosot = chunk_tokens_nosot[1:]
if unfinished_decoding:
assert last_token_fallback is not None
last_tokens = [last_token_fallback]
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable
n += 1
elif has_reached_decoding_limit():
# there were segments in the 30sec chunck, and then the LM got stuck
last_tokens = [torch.argmax(chunk_logprobs[-1]).item()]
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = (temperature == 0)
else:
last_tokens = [tokenizer.eot]
chunck_indices = chunk_tokens_nosot + last_tokens
assert len(chunk_logprobs) == len(chunck_indices), f"{len(chunk_logprobs)} != {len(chunck_indices)}"
logprobs = torch.cat([logprob[i].unsqueeze(0) for (logprob, i) in zip(chunk_logprobs, chunck_indices)])
assert min([p.isfinite().item() for p in logprobs]), \
f"Got infinite logprob among ({len(logprobs)}) {[(i, tokenizer.decode_with_timestamps([i]), v.item()) for (i,v) in zip(chunck_indices, logprobs)]}"
sum_logprob = sum(logprobs)
avg_logprob = sum_logprob/n
# don't skip if the logprob is high enough, whatever the no_speech_prob is
if logprob_threshold is not None and avg_logprob > logprob_threshold:
should_skip = False
if should_skip:
logger.debug(f"Skipping last {n_segments-i_start} segments (no_speech_prob {no_speech_prob} > {no_speech_threshold} and avg_logprob {avg_logprob} < {logprob_threshold})")
index_begin_30sec_chunck -= n_segments-i_start
segment_tokens = segment_tokens[:i_start] + [segment_tokens[-1]]
timestamped_word_segments = timestamped_word_segments[:i_start]
elif compute_word_confidence:
avg_logprob = avg_logprob.item()
i_token_end = -1
for i in range(i_start, n_segments):
tokens = segment_tokens[i]
i_token_start = i_token_end + 1
i_token_end = i_token_start + len(tokens)
assert chunck_indices[i_token_start:i_token_end] == tokens, f"Inconsistent token list {tokenizer.decode_with_timestamps(chunck_indices[i_token_start:i_token_end])} != {tokenizer.decode_with_timestamps(tokens)}"
i_token_start += 1 # skip sos (start time)
if not unfinished_decoding or i != n_segments-1:
i_token_end -= 1 # skip eos (end time)
segment_logprobs.append(logprobs[i_token_start:i_token_end])
segment_avglogprobs.append(avg_logprob)
else:
for i in range(i_start, n_segments):
segment_logprobs.append(None)
segment_avglogprobs.append(None)
else:
for i in range(i_start, n_segments):
segment_logprobs.append(None)
segment_avglogprobs.append(None)
if verbose_bugged and not should_skip:
for segment in timestamped_word_segments[i_start:]:
for word in segment:
print_timestamped(word)
# Reset counters
chunk_tokens = []
chunk_tokens_nosot = []
chunk_logprobs = []
no_speech_prob = None
def hook_attention_weights(layer, ins, outs, index):
nonlocal segment_attweights
# In old version of whisper, output is a single tensor
assert isinstance(outs, tuple) and len(outs) == 2, "whisper seems to be outdated, please update it (pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git)"
if not has_started:
return
w = outs[-1]
# Only the last attention weights is useful
if w.shape[-2] > 1:
w = w[:, :, -1:, :]
segment_attweights[index].append(w.cpu())
def hook_mfcc(layer, ins, outs):
nonlocal new_mfcc, mfcc
new_mfcc = ins[0]
if mfcc is None:
mfcc = new_mfcc
def hook_input_tokens(layer, ins, outs):
nonlocal segment_tokens, sot_index, chunk_tokens, chunk_tokens_nosot, logit_filters, has_started, language, num_inference_steps
num_inference_steps += 1
curr_tokens = ins[0]
assert curr_tokens.shape[0] == 1, "Batch decoding is not supported"
curr_tokens = curr_tokens.squeeze(0)
if is_sot(curr_tokens):
chunk_prompt = curr_tokens.tolist()
if language is None:
if len(curr_tokens) > 1:
language = tokenizer.decode(curr_tokens[-2:-1])
language = language[2:-2] # remove trailing "<|" and "|>"
whisper_options["language"] = language
if verbose and not whisper_options["verbose"] and len(curr_tokens) > 1:
# Reproduce whisper verbose (2/2)
print(f"Detected language: {whisper.tokenizer.LANGUAGES[language].title()}")
sys.stdout.flush()
logit_filters = get_logit_filters(model, whisper_options, prompt = chunk_prompt[1:-len(tokenizer.sot_sequence)])
may_flush_segment(curr_tokens)
# Get the index of the <|startoftranscript|> tokens (to get proba of silence later)
if is_sot(curr_tokens):
has_started = len(curr_tokens) > 1 or not model.is_multilingual
if no_speech_threshold is not None:
sot_index = curr_tokens.tolist().index(tokenizer.sot)
else:
sot_index = None
# Keep the last token only
if has_started:
segment_tokens[-1].append(curr_tokens[-1].item())
# Accumulate tokens
if has_started:
chunk_tokens.append(curr_tokens)
if not is_sot(curr_tokens):
chunk_tokens_nosot.append(curr_tokens[-1].item())
else:
if verbose and not whisper_options["verbose"]:
# Reproduce whisper verbose (1/2)
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
embedding_weights = None
def hook_output_logits(layer, ins, outs):
nonlocal no_speech_prob, chunk_logprobs, segment_tokens, chunk_tokens, chunk_tokens_nosot, last_chunk_token, embedding_weights, has_started, language, language_probs
if embedding_weights is None:
embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype)
# Get the probability of silence
if sot_index is not None and no_speech_prob is None:
logits = (outs[0][sot_index,:] @ embedding_weights).float()
logits = logits.softmax(dim=-1)
no_speech_prob = logits[tokenizer.no_speech].item()
# Get language probabilities
if language is None and sot_index is not None and model.is_multilingual:
index_start = tokenizer.sot + 1
index_end = index_start + len(tokenizer.all_language_tokens)
logits = (outs[0][sot_index,:] @ embedding_weights).float()
language_probs = logits[index_start:index_end].softmax(dim=-1)
language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist()))
# Get the log-probabilities of tokens (we don't know yet which one will be chosen)
if has_started:
logits = (outs[0][-1:,:] @ embedding_weights).float()
tokens = torch.cat(chunk_tokens).unsqueeze(0)
for logit_filter in logit_filters:
logit_filter.apply(logits, tokens)
logits = F.log_softmax(logits.squeeze(0), dim=-1)
chunk_logprobs.append(logits)
if WHIPSER_GE_20230306 and has_reached_decoding_limit():
last_chunk_token = torch.argmax(logits).item()
else:
last_chunk_token = None
try:
# Add hooks to the model, to get tokens and attention weights on the fly
all_hooks = []
all_hooks.append(model.encoder.conv1.register_forward_hook(hook_mfcc))
all_hooks.append(model.decoder.token_embedding.register_forward_hook(hook_input_tokens))
nblocks = len(model.decoder.blocks)
j = 0
for i, block in enumerate(model.decoder.blocks):
if i < nblocks - word_alignement_most_top_layers:
continue
all_hooks.append(
block.cross_attn.register_forward_hook(
lambda layer, ins, outs, index=j: hook_attention_weights(layer, ins, outs, index))
)
j += 1
if compute_word_confidence or no_speech_threshold is not None:
all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits))
transcription = model.transcribe(audio, **whisper_options)
finally:
# Remove hooks
for hook in all_hooks:
hook.remove()
# Finalize (collect last segment)
may_flush_segment()
segment_tokens.pop(-1)
token_special_idx = min(tokenizer.sot, tokenizer.eot)
def filter_tokens(tokens):
while len(tokens) and tokens[0] >= token_special_idx:
tokens = tokens[1:]
while len(tokens) and tokens[-1] >= token_special_idx:
tokens = tokens[:-1]
return tokens
assert len(segment_tokens) == len(timestamped_word_segments), f"Inconsistent number of segments: tokens ({len(segment_tokens)}) != timestamped_word_segments ({len(timestamped_word_segments)})"
assert len(segment_avglogprobs) == len(segment_tokens), f"Inconsistent number of segments: avg logprobs ({len(segment_avglogprobs)}) != tokens ({len(segment_tokens)})"
assert len(segment_logprobs) == len(segment_tokens), f"Inconsistent number of segments: logprobs ({len(segment_logprobs)}) != tokens ({len(segment_tokens)})"
whisper_segments = transcription["segments"]
l1 = len(whisper_segments)
l2 = len(timestamped_word_segments)
if l1 != l2 and l1 != 0:
logger.warning(f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})")
assert l1 == l2 or l1 == 0, f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})"
logger.debug("Compile results")
words = []
for i, (segment, timestamped_words, token, avglogprob, logprobs) in enumerate(zip(whisper_segments, timestamped_word_segments, segment_tokens, segment_avglogprobs, segment_logprobs)):
timestamped_tokens = filter_tokens(token)
whisper_tokens = filter_tokens(segment["tokens"])
if timestamped_tokens != whisper_tokens:
if len(timestamped_tokens) == len(whisper_tokens) + 1:
logger.warning(f"An additional token was added on segment {i}")
elif WHIPSER_GE_20230306 and len(whisper_tokens) == 0:
logger.warning(f"Whisper has empty segment {i}")
assert segment["end"] == segment["start"], f"Fatal Error: Got empty segment {i} with non-zero duration"
segment["tokens"] = timestamped_tokens
segment["text"] = tokenizer.decode(timestamped_tokens)
else:
assert len(timestamped_tokens) < len(whisper_tokens) and timestamped_tokens == whisper_tokens[:len(timestamped_tokens)], \
f"Fatal Error: Got inconsistent text for segment {i}:\n({len(timestamped_tokens)})\n{tokenizer.decode_with_timestamps(timestamped_tokens)}\n{timestamped_tokens}\n!=\n({len(whisper_tokens)})\n{tokenizer.decode_with_timestamps(whisper_tokens)}\n{whisper_tokens[:len(timestamped_tokens)]}"
segment["tokens"] = token if WHIPSER_GE_20230306 else timestamped_tokens # tokens include special timestamp tokens since 20230306
segment["text"] = tokenizer.decode(segment["tokens"])
logger.warning(f"Text had to be shortned on segment {i}:\n{tokenizer.decode(timestamped_tokens)}\n!=\n{tokenizer.decode(whisper_tokens)}")
timestamped_words[-1]["avg_logprob_reliable"] = False
offset = segment["seek"] * HOP_LENGTH / SAMPLE_RATE
for timestamped_word in timestamped_words:
timestamped_word["start"] += offset
timestamped_word["end"] += offset
timestamped_word["idx_segment"] = i
if compute_word_confidence:
if "avg_logprob_reliable" not in timestamped_words[-1] or timestamped_words[-1]["avg_logprob_reliable"]:
# assert abs(segment["avg_logprob"] - avglogprob) < 1e-2, f"Fatal Error: Got inconsistent logprob for segment {i}: {segment['avg_logprob']} != {avglogprob}"
if abs(segment["avg_logprob"] - avglogprob) >= 1e-2:
logger.warning(f"Recomputed different logprob for segment {i}: {avglogprob} != {segment['avg_logprob']}")
if include_punctuation_in_confidence:
segment["confidence"] = round_confidence(logprobs.mean().exp().item())
else:
logprobs_nopunc = []
i_end = 0
for timestamped_word in timestamped_words:
i_start = i_end
tokens = timestamped_word["tokens"]
i_end += len(tokens)
assert i_end <= len(logprobs), f"Fatal Error: Got out-of-bound index for segment {i}: {i_end} > {len(logprobs)}"
if include_punctuation_in_confidence:
word_logprobs = logprobs[i_start:i_end]
else:
while len(tokens) > 1 and len(tokens[-1]) and tokens[-1][-1] in _punctuation: # Note: look at the last character of token, to take into account "...", "!!", etc.
tokens = tokens[:-1]
word_logprobs = logprobs[i_start:i_start + len(tokens)]
logprobs_nopunc.append(word_logprobs)
timestamped_word["confidence"] = round_confidence(word_logprobs.mean().exp().item() if len(word_logprobs) else 0.0)
if i_end not in [len(logprobs), len(logprobs)-1]:
logger.warning(f"Got inconsistent length for segment {i} ({len(logprobs)} != {i_end}). Some words have been ignored.")
if not include_punctuation_in_confidence:
logprobs_nopunc = torch.cat(logprobs_nopunc)
segment["confidence"] = round_confidence(logprobs_nopunc.mean().exp().item())
words.extend(timestamped_words)
if language_probs:
transcription["language_probs"] = language_probs
return transcription, words
def _transcribe_timestamped_naive(
model,
audio,
remove_punctuation_from_words,
compute_word_confidence,
include_punctuation_in_confidence,
refine_whisper_precision_nframes,
alignment_heads,
plot_word_alignment,
word_alignement_most_top_layers,
detect_disfluencies,
trust_whisper_timestamps,
min_word_duration,
**whisper_options,
):
verbose = whisper_options["verbose"]
whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"] # We will print intermediate results ourselves
language = whisper_options["language"]
refine_whisper_precision_sec = refine_whisper_precision_nframes * AUDIO_TIME_PER_TOKEN
word_alignement_most_top_layers = float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers
audio = get_audio_tensor(audio)
audio_duration = audio.shape[-1] / SAMPLE_RATE
if verbose and language is None and not whisper_options["verbose"]:
# Reproduce whisper verbose (1/2)
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language)
language_probs = None
def hook_output_logits(layer, ins, outs):
nonlocal language_probs, tokenizer
# Get language probabilities
if language_probs is None:
if outs.shape[1] == 1:
embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype)
index_start = tokenizer.sot + 1
index_end = index_start + len(tokenizer.all_language_tokens)
logits = (outs[0][0,:] @ embedding_weights).float()
language_probs = logits[index_start:index_end].softmax(dim=-1)
language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist()))
else:
language_probs = False
all_hooks = []
if model.is_multilingual:
all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits))
try:
transcription = model.transcribe(audio, **whisper_options)
finally:
for hook in all_hooks:
hook.remove()
if verbose and language is None and not whisper_options["verbose"]:
# Reproduce whisper verbose (2/2)
print(f"Detected language: {whisper.tokenizer.LANGUAGES[transcription['language']].title()}")
sys.stdout.flush()
language = norm_language(transcription["language"])
use_space = should_use_space(language)
n_mels = model.dims.n_mels if hasattr(model.dims, "n_mels") else 80
attention_weights = [[] for _ in range(min(word_alignement_most_top_layers,len(model.decoder.blocks)))]
try:
all_hooks = []
# Hook the model
nblocks = len(model.decoder.blocks)
j = 0
for i, block in enumerate(model.decoder.blocks):
if i < nblocks - word_alignement_most_top_layers:
continue
all_hooks.append(
block.cross_attn.register_forward_hook(
lambda layer, ins, outs, index=j: attention_weights.__setitem__(index, outs[-1])
)
)
j += 1
# When not relying on Whisper timestamps
current_tokens = []
token_to_idx_segment = []
words = []
previous_end = 0
whisper_segments = transcription["segments"]
for i_segment, segment in enumerate(whisper_segments):
# Note: this could also be a fix to issue #61 where a "<|te|>" token was predicted
# segment["tokens"] = [t for t in segment["tokens"] if t < tokenizer.eot or t >= tokenizer.timestamp_begin]
start = end = tokens = None
if trust_whisper_timestamps:
start = segment["start"]
end = segment["end"]
if end < start:
# Whisper is wrong on the prediction of segment end
end = min(audio_duration, start + SEGMENT_DURATION)
start_margin_min = start - refine_whisper_precision_sec
start_margin_max = start + refine_whisper_precision_sec
if start >= audio_duration - min_word_duration or (previous_end >= start_margin_min and previous_end <= start_margin_max):
# Make start as accurate as possible (as the decoding will start with timestamp <|0|>)
start = previous_end
else:
# Fallback
start = start_margin_min
if start > audio_duration - min_word_duration:
# Skip last segment if too short
logger.warning(f"Skipping segment outside of audio duration {audio_duration} (original: {segment['start']}-{segment['end']}, new: {start}-XXX)")
continue
end_margin_min = end - refine_whisper_precision_sec
end_margin_max = end + refine_whisper_precision_sec
if i_segment < len(whisper_segments) - 1:
# Try to enforce:
# end + min_word_duration <= next start + refine_whisper_precision_sec
end_margin_max2 = whisper_segments[i_segment + 1]["start"] + refine_whisper_precision_sec - min_word_duration
if end_margin_max2 >= end_margin_min:
end_margin_max = min(end_margin_max2, end_margin_max)
end = min(audio_duration, end_margin_max)
if end < start + min_word_duration:
logger.warning(f"Got super short segment (original from whisper: {segment['start']}-{segment['end']}, new: {start, end})")
end = min(audio_duration, start + min_word_duration)
if end <= start:
logger.warning(f"Skipping this short segment occuring too close to the end of the audio")
continue
tokens = segment["tokens"]
else:
seek = segment["seek"]
new_tokens = segment["tokens"]
if not len(new_tokens):
continue
# Add timestamps that will be needed after
if new_tokens[0] < tokenizer.timestamp_begin:
relative_start = segment["start"] - (seek * HOP_LENGTH / SAMPLE_RATE)
start_token = round(relative_start * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin
new_tokens = [start_token] + new_tokens
if new_tokens[-1] < tokenizer.timestamp_begin:
relative_end = segment["end"] - (seek * HOP_LENGTH / SAMPLE_RATE)
end_token = round(relative_end * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin
new_tokens = new_tokens + [end_token]
current_tokens.extend(new_tokens)
token_to_idx_segment.extend([i_segment] * len(new_tokens))
next_seek = whisper_segments[i_segment+1]["seek"] if i_segment < len(whisper_segments) - 1 else None
if seek != next_seek:
start = float(seek * HOP_LENGTH / SAMPLE_RATE)
assert start < audio_duration, f"Got start {start} which is outside of audio duration {audio_duration}"
end = min(start + SEGMENT_DURATION, audio_duration)
tokens = current_tokens
if tokens is None or not len(tokens):
continue
start_sample = min(round(start * SAMPLE_RATE), audio.shape[-1])
end_sample = min(round(end * SAMPLE_RATE), audio.shape[-1])
# Extract features on the audio segment
sub_audio = audio_minimum_padding(audio[start_sample:end_sample])
mfcc = whisper.log_mel_spectrogram(sub_audio, n_mels).to(model.device)
mfcc = whisper.pad_or_trim(mfcc, N_FRAMES)
mfcc = mfcc.unsqueeze(0)
segment_tokens_check = []
if tokens[0] >= tokenizer.timestamp_begin:
segment_tokens_check.append(tokens[0])
while tokens[0] >= tokenizer.timestamp_begin:
tokens = tokens[1:]
assert len(tokens), "Got transcription with only timestamps!"
last_token_check = None
while tokens[-1] >= tokenizer.timestamp_begin:
last_token_check = tokens[-1]
tokens = tokens[:-1]
tokens = [
*tokenizer.sot_sequence,
tokenizer.timestamp_begin,
] + tokens
i_start = len(tokenizer.sot_sequence)
with torch.no_grad():
logprobs = model(mfcc, torch.Tensor(tokens).int().to(model.device).unsqueeze(0))
logprobs = F.log_softmax(logprobs, dim=-1)
end_token = tokenizer.timestamp_begin + round(min(N_FRAMES * HOP_LENGTH, end_sample - start_sample) // AUDIO_SAMPLES_PER_TOKEN)
tokens = tokens[i_start:] + [end_token]
attention_weights = [w[:, :, i_start-1:, :] for w in attention_weights]
ws = perform_word_alignment(
tokens,
attention_weights,
tokenizer,
use_space=use_space,
alignment_heads=alignment_heads,
remove_punctuation_from_words=remove_punctuation_from_words,
refine_whisper_precision_nframes=refine_whisper_precision_nframes,
detect_disfluencies=detect_disfluencies,
mfcc=mfcc,
plot=plot_word_alignment,
)
segment_logprobs = []
i_token = 1
for word in ws:
word["start"] = round(word["start"] + start, 2)
word["end"] = round(word["end"] + start, 2)
if trust_whisper_timestamps:
word.update({"idx_segment": i_segment})
else:
assert i_token < len(tokens)
assert not len(word["tokens_indices"]) or word["tokens_indices"][0] == tokens[i_token]
word.update({"idx_segment": token_to_idx_segment[i_token]})
i_token += len(word["tokens"])
while i_token < len(tokens) and tokens[i_token] >= tokenizer.timestamp_begin:
i_token += 1
tok_indices = word["tokens_indices"]
segment_tokens_check.extend(tok_indices)
if compute_word_confidence:
tok = word["tokens"]
i_end = i_start + len(tok)
if include_punctuation_in_confidence:
while len(tok) > 1 and len(tok[-1]) and tok[-1][-1] in _punctuation: # Note: look at the last character of token, to take into account "...", "!!", etc.
tok = tok[:-1]
tok_indices = tok_indices[:-1]
word_logprobs = [logprobs[:, step, tok] for (step, tok) in zip(range(i_start, i_start + len(tok_indices)), tok_indices)]
i_start = i_end
if len(word_logprobs):
word_logprobs = torch.cat(word_logprobs)
segment_logprobs.append(word_logprobs)
word_confidence = word_logprobs.mean().exp().item()
else:
word_confidence = 0
word.update({"confidence": round_confidence(word_confidence)})
words.append(word)
if verbose:
print_timestamped(word)
if last_token_check is not None:
segment_tokens_check.append(last_token_check)
if trust_whisper_timestamps:
if segment_tokens_check != segment["tokens"]:
assert len(segment_tokens_check) < len(segment["tokens"]) and segment_tokens_check[:-1] == segment["tokens"][:len(segment_tokens_check)-1], \
f"Got inconsistent tokens: {tokenizer.decode(segment_tokens_check)} != {tokenizer.decode(segment['tokens'])}"
segment["tokens"] = segment_tokens_check
segment["text"] = tokenizer.decode(segment["tokens"])
# else: TODO
if len(segment_logprobs):
segment.update({"confidence": round_confidence(torch.cat(segment_logprobs).mean().exp().item())})
if len(ws):
previous_end = ws[-1]["end"]
if not trust_whisper_timestamps:
current_tokens = []
token_to_idx_segment = []
finally:
# Remove hooks
for hook in all_hooks:
hook.remove()
if language_probs:
transcription["language_probs"] = language_probs
return (transcription, words)
def get_audio_tensor(audio, device="cpu"):
if isinstance(audio, str):
audio = whisper.load_audio(audio)
if isinstance(audio, np.ndarray):
audio = torch.Tensor(audio)
else:
assert isinstance(audio, torch.Tensor), f"Got unexpected audio of type {type(audio)}"
return audio.to(device)
def audio_minimum_padding(audio):
if audio.shape[-1] <= 200:
return whisper.pad_or_trim(audio, 201)
return audio
def should_use_space(language):
return norm_language(language) not in ["zh", "ja", "th", "lo", "my", "yue"]
def norm_language(language):
if language is None:
return "en"
return whisper.tokenizer.TO_LANGUAGE_CODE.get(language.lower(), language)
def print_timestamped(w):
line = f"[{format_timestamp(w['start'])} --> {format_timestamp(w['end'])}] {w['text']}\n"
# compared to just `print(line)`, this replaces any character not representable using
# the system default encoding with an '?', avoiding UnicodeEncodeError.
sys.stdout.write(line.encode(sys.getdefaultencoding(), errors="replace").decode())
sys.stdout.flush()
def get_logit_filters(model, whisper_options, prompt = None):
decoding_options = get_decoding_options(whisper_options)
if "initial_prompt" in decoding_options:
prompt0 = decoding_options.pop("initial_prompt")
if prompt is None:
prompt = prompt0
if prompt is not None:
decoding_options["prompt"] = prompt
decoding_options = whisper.DecodingOptions(
without_timestamps=False,
max_initial_timestamp=1.0,
prefix=None,
suppress_blank=True,
**decoding_options
)
# This performs some checks on the options
decoding_task = whisper.decoding.DecodingTask(model, decoding_options)
return decoding_task.logit_filters
def get_decoding_options(whisper_options):
return dict([(k,v) for (k,v) in whisper_options.items()
if k not in [
"no_speech_threshold",
"logprob_threshold",
"compression_ratio_threshold",
"condition_on_previous_text",
"verbose",
]
])
def get_tokenizer(model, task="transcribe", language="en"):
try:
return whisper.tokenizer.get_tokenizer(
model.is_multilingual,
num_languages=model.num_languages if hasattr(model, "num_languages") else 99,
task=task, language=language
)
except TypeError: # Old openai-whisper version
return whisper.tokenizer.get_tokenizer(
model.is_multilingual,
task=task, language=language
)
def perform_word_alignment(
tokens,
attention_weights,
tokenizer,
use_space=True,
mfcc=None,
refine_whisper_precision_nframes=0,
remove_punctuation_from_words=False,
include_punctuation_in_timing=False, # Was True before 1.9
unfinished_decoding=False,
alignment_heads=None,
medfilt_width=9,
qk_scale=1.0,
detect_disfluencies=True,
subwords_can_be_empty=True, # Was False before 1.11
plot=False,
debug=False,
):
"""
Perform word alignment on the given tokens and attention weights.
Returns a list of (word, start_time, end_time) tuples.
tokens: list of tokens (integers)
attention_weights: list of attention weights (torch tensors)
tokenizer: tokenizer used to tokenize the text
use_space: whether to use spaces to split the tokens into words (should be true for all languages except Japanese, Chinese, ...)
mfcc: MFCC features (used to identify padded region, and for plotting)
refine_whisper_precision_nframes: precision time
remove_punctuation_from_words: whether to remove punctuation from words
include_punctuation_in_timing: whether to include punctuation in the timing of (previous) words
unfinished_decoding: whether the decoding is unfinished (e.g. because the model is stuck)
alignment_heads: list of attention heads to use for alignment
medfilt_width: width of the median filter used to smooth the attention weights
qk_scale: scale factor applied to the attention weights
plot: whether to plot the word alignment
debug: whether to print debug information
"""
assert len(tokens) > 1, f"Got unexpected sequence of tokens of length {len(tokens)} {tokenizer.decode_with_timestamps(tokens)}"
start_token = tokens[0] - tokenizer.timestamp_begin
end_token = tokens[-1] - tokenizer.timestamp_begin
# Check start / end tokens
if start_token < 0:
raise RuntimeError(f"Missing start token in: {tokenizer.decode_with_timestamps(tokens)}")
if len(tokens) == 1 or end_token < 0:
# This can happens when Whisper is stucked as a Language Model
if debug:
logger.debug(f"Missing end token in {tokenizer.decode_with_timestamps(tokens)}")
end_token = N_FRAMES // 2
if end_token == start_token and refine_whisper_precision_nframes == 0:
if debug:
logger.debug(f"Got empty segment in {tokenizer.decode_with_timestamps(tokens)}")
return []
# Let a minimal duration given the number of tokens (see https://github.com/linto-ai/whisper-timestamped/issues/67)
end_token = min(N_FRAMES // 2, max(end_token, start_token + len(tokens)))
# Put some margin around the segment
if refine_whisper_precision_nframes > 0:
start_token = max(start_token - refine_whisper_precision_nframes, 0)
end_token = min(end_token + refine_whisper_precision_nframes, N_FRAMES // 2)
if end_token <= start_token:
raise RuntimeError(f"Got segment with null or negative duration {tokenizer.decode_with_timestamps(tokens)}: {start_token} {end_token}")
start_time = start_token * AUDIO_TIME_PER_TOKEN
# end_time = end_token * AUDIO_TIME_PER_TOKEN
split_tokens = split_tokens_on_spaces if use_space else split_tokens_on_unicode
words, word_tokens, word_tokens_indices = split_tokens(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words)
# If the last token is a punctuation that comes after a word
# group this final punctuation with the final timestamp
# This is to avoid assigning the final punctuation to a big silence or a noise/music background coming after
num_punctuations_per_tokens = [
0 if len(w) == 1 or w[-1] not in _punctuation else 1
for w in word_tokens
]
if include_punctuation_in_timing:
num_punctuations_per_tokens[:-2]=[0]*(len(num_punctuations_per_tokens)-2)
for i, w in enumerate(attention_weights):
assert w.shape[-2] == len(tokens), f"Attention weights have wrong shape: {w.shape[-2]} (expected {len(tokens)})."
weights = torch.cat(attention_weights) # layers * heads * tokens * frames
num_tokens = weights.shape[-2]
num_frames = end_token - start_token
if num_tokens > num_frames:
logger.warning(f"Too much text ({num_tokens} tokens) for the given number of frames ({num_frames}) in: {tokenizer.decode_with_timestamps(tokens)}\nThe end of the text will be removed.")
return perform_word_alignment(
tokens[:num_frames-1] + [tokens[-1]],
[torch.cat([w[:, :, :num_frames-1, :], w[:, :, -1:, :]], dim=-2)
for w in attention_weights],
tokenizer,
use_space=use_space,
refine_whisper_precision_nframes=refine_whisper_precision_nframes,
medfilt_width=medfilt_width,
qk_scale=qk_scale,
alignment_heads=alignment_heads,
mfcc=mfcc,
plot=plot,
remove_punctuation_from_words=remove_punctuation_from_words,
detect_disfluencies=detect_disfluencies,
subwords_can_be_empty=subwords_can_be_empty,
unfinished_decoding=True,
debug=debug,
)
assert end_token <= weights.shape[-1]
assert len(tokens) == num_tokens
weights = weights[..., start_token: end_token].cpu() # layers * heads * tokens * frames
if alignment_heads is None:
weights = weights.reshape(-1, *weights.shape[-2:]) # N * tokens * frames
else:
weights = torch.stack([weights[l][h] for l, h in alignment_heads.indices().T])
weights = median_filter(weights, (1, 1, medfilt_width))
weights = torch.tensor(weights * qk_scale).softmax(dim=-1)
weights = weights.mean(axis=(0)) # average over layers and heads # tokens * frames
weights = weights / weights.norm(dim=-2, keepdim=True) # This was before the mean before 1.9
weights = -weights.double().numpy()
worse_weight = 0
# Get the limit of audio duration
max_duration = None
if mfcc is not None:
max_duration = find_start_padding(mfcc)
if max_duration is not None:
max_duration = max_duration // 2
# Enforce the max duration
if max_duration:
if start_token >= max_duration:
logger.warning(f"Got start time outside of audio boundary")
else:
weights[:-1, max_duration:] = worse_weight
# Encourage to start early
weights[0, 0] = weights.min()
# weights[0, refine_whisper_precision_nframes*2:] = worse_weight
if subwords_can_be_empty:
step_pattern = dtw.stepPattern.symmetric1
else:
# Similar as "symmetric1" but without the possibility to have the same timestamp for two tokens
step_pattern = dtw.stepPattern.StepPattern(dtw.stepPattern._c(
1, 1, 1, -1,
1, 0, 0, 1,
2, 0, 1, -1,
2, 0, 0, 1,
))
alignment = dtw.dtw(weights, step_pattern=step_pattern)
global num_alignment_for_plot
num_alignment_for_plot += 1
if plot:
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
plot_mfcc = 1 if mfcc is not None else 0
plot_disfluencies = 1 if detect_disfluencies else 0
nplots = (1 + plot_mfcc + plot_disfluencies)
plt.subplots(nplots, 1, figsize=(16, 9), gridspec_kw={'height_ratios': [3] + [1] * (nplots - 1)})
plt.subplot(nplots, 1, 1, frameon=False)
plt.imshow(-weights, aspect="auto")
plt.plot(alignment.index2s, alignment.index1s, color="red")
xticks = np.arange(0, weights.shape[1], 1 / AUDIO_TIME_PER_TOKEN)
xticklabels = [round_timestamp(x) for x in xticks * AUDIO_TIME_PER_TOKEN + start_time]
ylims = plt.gca().get_ylim()
ax = plt.gca()
ax.tick_params('both', length=0, width=0, which='minor', pad=6)
ax.yaxis.set_ticks_position("left")
ax.yaxis.set_label_position("left")
ax.invert_yaxis()
ax.set_ylim(ylims)
major_ticks = [-0.5]
minor_ticks = []
current_y = 0
for word, word_token in zip(words, word_tokens):
minor_ticks.append(current_y + len(word_token) / 2 - 0.5)
current_y += len(word_token)
major_ticks.append(current_y - 0.5)
words_with_subwords = ["|".join(s).strip() for (w, s) in zip(words, word_tokens)]
ax.yaxis.set_minor_locator(ticker.FixedLocator(minor_ticks))
ax.yaxis.set_minor_formatter(
ticker.FixedFormatter(words_with_subwords))
ax.set_yticks(major_ticks)
ax.yaxis.set_major_formatter(ticker.NullFormatter())
for y in major_ticks:
plt.axhline(y, color="black", linestyle="dashed")
plt.ylabel("Words")
if plot_mfcc:
plt.xticks(xticks)
plt.setp(plt.gca().get_xticklabels(), visible=False)
xticks *= 2
plt.subplot(nplots, 1, 2, frameon=False)
plt.imshow(mfcc[0, :, start_token * 2: end_token * 2].cpu(), aspect="auto", origin="lower")
plt.yticks([])
plt.ylabel("MFCC")
plt.xticks(xticks, xticklabels)
plt.xlabel("Time (s)")
jumps = np.diff(alignment.index1s)
jumps = np.pad(jumps, (1, 0), constant_values=1)
jumps = jumps.astype(bool)
jumps = alignment.index2s[jumps]
jumps = np.pad(jumps, (0, 1), constant_values=alignment.index2s[-1])
jumps_start = jumps
disfluences = {}
if detect_disfluencies:
jumps_start = copy.copy(jumps)
for (i_token, (tok, begin, end)) in enumerate(zip(tokens, jumps[:-1], jumps[1:])):
# Find local maxima in the portion of attention weights
attention_weights = -weights[i_token, begin:end]
peaks, properties = find_peaks(attention_weights,
width=3,
prominence=0.02,
)
# If more than
if len(peaks) > 1:
if "left_ips" in properties:
left = [round(x) for x in properties["left_ips"]]
else:
left = properties["left_bases"]
new_begin = left[-1] + begin
jumps_start[i_token] = new_begin
if new_begin != begin:
is_punctuation = tokenizer.decode_with_timestamps([tok]) in _punctuation
if not is_punctuation:
disfluences[i_token] = (begin, jumps_start[i_token])
else:
disfluences[i_token+1] = (begin, end)
if plot:
plt.subplot(nplots, 1, 2 + plot_mfcc, frameon=False)
plt.plot(range(begin,end), attention_weights)
plt.xlim(0, end)
for i, p in enumerate(peaks):
color = 'red' if (len(peaks)>1 and i<len(peaks)-1) else 'green'
plt.vlines(begin+p, 0, 1, color=color, linestyle="--")
if "left_bases" in properties:
def barxxy(start, end, y, **kwargs):
middle = (start + end) / 2
plt.bar(middle, y, width=end-start, **kwargs)
color = 'red' if len(peaks)>1 else 'green'
barxxy(begin+properties["left_bases"], begin+properties["right_bases"], properties.get("prominences",[1]*len(properties["left_bases"])), alpha=0.5,
# put a line with a custom color
linewidth=1, edgecolor=color
)
if "left_ips" in properties:
for left in properties["left_ips"]:
plt.vlines(begin+left, 0, 0.5, color='green', linestyle=':')
for right in properties["right_ips"]:
plt.vlines(begin+right, 0, 0.5, color='red', linestyle=':')
# display the word-level timestamps in a table
word_boundaries = np.cumsum([len(t) for t in word_tokens])
word_boundaries = np.pad(word_boundaries, (1, 0))
begin_times = jumps_start[word_boundaries[:-1]]
end_times = jumps[word_boundaries[1:] - num_punctuations_per_tokens]
begin_times = begin_times * AUDIO_TIME_PER_TOKEN
end_times = end_times * AUDIO_TIME_PER_TOKEN
if detect_disfluencies:
to_be_added = []
i_start = 0
for i_word, toks in enumerate(word_tokens[:-1]):
i_end = i_start + len(toks)
if i_start in disfluences and i_word > 0:
begin, end = disfluences[i_start]
begin *= AUDIO_TIME_PER_TOKEN
end *= AUDIO_TIME_PER_TOKEN
to_be_added.append((i_word, begin, end))
i_start = i_end
# Add from the end to avoid messing up the indices
for (i_word, begin, end) in to_be_added[-1::-1]:
words.insert(i_word, DISFLUENCY_MARK)
word_tokens.insert(i_word, [])
word_tokens_indices.insert(i_word, [])
begin_times = np.insert(begin_times, i_word, begin)
end_times = np.insert(end_times, i_word, end)
# Ignore start / end tokens
if not refine_whisper_precision_nframes:
begin_times[1] = begin_times[0]
if not refine_whisper_precision_nframes:
end_times[-2] = end_times[-1]
if unfinished_decoding:
words = words[1:]
word_tokens = word_tokens[1:]
word_tokens_indices = word_tokens_indices[1:]
begin_times = begin_times[1:]
end_times = end_times[1:]
else:
words = words[1:-1]
word_tokens = word_tokens[1:-1]
word_tokens_indices = word_tokens_indices[1:-1]
begin_times = begin_times[1:-1]
end_times = end_times[1:-1]
if plot:
ymin = 1
plt.subplot(nplots, 1, 1)
for i, (w, ws, begin, end) in enumerate(zip(words, word_tokens, begin_times, end_times)):
ymax = ymin + len(ws)
if mfcc is None:
plt.text(begin / AUDIO_TIME_PER_TOKEN, num_tokens-0.5, w, ha="left", va="top", color="red")
for x in [begin, end,]:
plt.axvline(x / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted",
ymin=1-ymin/num_tokens,
ymax=0, # 1-ymax/num_tokens,
)
ymin = ymax
if plot_mfcc:
plt.subplot(nplots, 1, 2)
for i, (w, begin, end) in enumerate(zip(words, begin_times, end_times)):
plt.text(begin * 2 / AUDIO_TIME_PER_TOKEN, mfcc.shape[-2]*1.05, w, ha="left", va="bottom", color="red")
for x in [begin, end,]:
plt.axvline(x * 2 / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted")
if isinstance(plot, str):
plt.savefig(f"{plot}.alignment{num_alignment_for_plot:03d}.jpg", bbox_inches='tight', pad_inches=0)
else:
plt.show()
return [
dict(
text=word,
start=round_timestamp(begin + start_time),
end=round_timestamp(end + start_time),
tokens=tokens,
tokens_indices=tokens_indices,
)
for word, begin, end, tokens, tokens_indices in zip(words, begin_times, end_times, word_tokens, word_tokens_indices)
if not word.startswith("<|")
]
def find_start_padding(mfcc):
""" Return start of padding given the mfcc, or None if there is no padding """
last_mfcc = mfcc[0, :, -1]
if torch.min(last_mfcc) == torch.max(last_mfcc) == 0:
candidate_index = mfcc.shape[-1] - 2
while candidate_index > 0:
candidate = mfcc[0, :, candidate_index]
if not torch.equal(candidate, last_mfcc):
return candidate_index + 1
candidate_index -= 1
return 0 # WTF!?
def round_confidence(x):
return round(x, 3)
def round_timestamp(x):
return round(x, 2)
_punctuation = "".join(c for c in string.punctuation if c not in ["-", "'"]) + "。,!?:”、…"
def split_tokens_on_unicode(tokens: list, tokenizer, remove_punctuation_from_words=False, isolate_punctuations=False):
words = []
word_tokens = []
word_tokens_indices = []
current_tokens = []
for token in tokens:
current_tokens.append(token)
decoded = tokenizer.decode_with_timestamps([t for t in current_tokens if t < tokenizer.eot or t >= tokenizer.timestamp_begin])
if "\ufffd" not in decoded:
empty_tokens = [""] * (len(current_tokens)-1)
punctuation = not isolate_punctuations and (decoded.strip() and decoded.strip() in _punctuation)
previous_special = len(word_tokens_indices) > 0 and (word_tokens_indices[-1][-1] >= tokenizer.timestamp_begin)
if punctuation and not previous_special:
if len(words) == 0:
words = [""]
word_tokens = [[]]
if not remove_punctuation_from_words:
words[-1] += decoded
word_tokens[-1].extend(empty_tokens + [decoded])
word_tokens_indices[-1].extend(current_tokens)
else:
words.append(decoded)
word_tokens.append(empty_tokens + [decoded])
word_tokens_indices.append(current_tokens)
current_tokens = []
return words, word_tokens, word_tokens_indices
def split_tokens_on_spaces(tokens: torch.Tensor, tokenizer, remove_punctuation_from_words=False):
subwords, subword_tokens_list, subword_tokens_indices_list = split_tokens_on_unicode(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words)
words = []
word_tokens = []
word_tokens_indices = []
for i, (subword, subword_tokens, subword_tokens_indices) in enumerate(zip(subwords, subword_tokens_list, subword_tokens_indices_list)):
special = (subword_tokens_indices[0] >= tokenizer.timestamp_begin)
previous_special = (i > 0) and (subword_tokens_indices_list[i-1][0] >= tokenizer.timestamp_begin)
next_special = (i < len(subword_tokens_indices_list)-1) and (subword_tokens_indices_list[i+1][0] >= tokenizer.timestamp_begin)
previous_space = (i > 0) and (not subwords[i-1].strip())
is_space = not subword.strip()
with_space = subword.startswith(" ") and not is_space
punctuation = not is_space and subword.strip() in _punctuation
if special or (not previous_space and (previous_special or (with_space and not punctuation) or (is_space and not next_special))):
words.append(subword.strip())
word_tokens.append(subword_tokens)
word_tokens_indices.append(subword_tokens_indices)
else:
words[-1] = words[-1] + subword.strip()
word_tokens[-1].extend(subword_tokens)
word_tokens_indices[-1].extend(subword_tokens_indices)
return words, word_tokens, word_tokens_indices
def check_vad_method(method, with_version=False):
if method in [True, "True", "true"]:
return check_vad_method("silero") # default method
elif method in [False, "False", "false"]:
return False
elif method.startswith("silero"):
version = None
if method != "silero":
assert method.startswith("silero:"), f"Got unexpected VAD method {method}"
version = method.split(":")[1]
if not version.startswith("v"):
version = "v" + version
try:
assert float(version[1:]) >= 1
except:
raise ValueError(f"Got unexpected silero version {version} (please check https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)")
if with_version:
return ("silero", version)
else:
return method
elif method == "auditok":
try:
import auditok
except ImportError:
raise ImportError("Please install auditok to use the auditok VAD (or use another VAD method)")
else:
raise ValueError(f"Got unexpected VAD method {method}")
return method
_silero_vad_model = None
_has_onnx = None
def get_vad_segments(audio,
output_sample=False,
min_speech_duration=0.1,
min_silence_duration=0.1,
dilatation=0.5,
method="silero",
):
"""
Get speech segments from audio using Silero VAD
parameters:
audio: torch.Tensor
audio data *in 16kHz*
output_sample: bool
if True, return start and end in samples instead of seconds
min_speech_duration: float
minimum duration (in sec) of a speech segment
min_silence_duration: float
minimum duration (in sec) of a silence segment
dilatation: float
how much (in sec) to enlarge each speech segment detected by the VAD
method: str
VAD method to use (auditok, silero, silero:v3.1)
"""
global _silero_vad_model, _silero_get_speech_ts, _has_onnx
if method.startswith("silero"):
version = None
_, version = check_vad_method(method, True)
# See discussion https://github.com/linto-ai/whisper-timestamped/pull/142/files#r1398326287
need_folder_hack = version and (version < "v4")
if _silero_vad_model is None:
# ONNX support since 3.1 in silero
if (version is None or version >= "v3.1") and (_has_onnx is not False):
onnx=True
try:
import onnxruntime
onnxruntime.set_default_logger_severity(3) # Remove warning "Removing initializer 'XXX'. It is not used by any node and should be removed from the model."
_has_onnx = True
except ImportError as err:
logger.warning(f"Please install onnxruntime to use more efficiently silero VAD")
_has_onnx = False
onnx=False
else:
onnx=False
# Choose silero version because of problems with version 4, see https://github.com/linto-ai/whisper-timestamped/issues/74
repo_or_dir_master = os.path.expanduser("~/.cache/torch/hub/snakers4_silero-vad_master")
repo_or_dir_specific = os.path.expanduser(f"~/.cache/torch/hub/snakers4_silero-vad_{version}") if version else repo_or_dir_master
repo_or_dir = repo_or_dir_specific
tmp_folder = None
def apply_folder_hack():
nonlocal tmp_folder
if os.path.exists(repo_or_dir_master):
tmp_folder = repo_or_dir_master + ".tmp"
shutil.move(repo_or_dir_master, tmp_folder)
# Make a symlink to the v3.1 model, otherwise it fails
input_exists = os.path.exists(repo_or_dir_specific)
if not input_exists:
# Make dummy file for the symlink to work
os.makedirs(repo_or_dir_specific, exist_ok=True)
os.symlink(repo_or_dir_specific, repo_or_dir_master)
if not input_exists:
shutil.rmtree(repo_or_dir_specific)
source = "local"
if not os.path.exists(repo_or_dir):
# Load specific version of silero
repo_or_dir = f"snakers4/silero-vad:{version}" if version else "snakers4/silero-vad"
source = "github"
if need_folder_hack:
apply_folder_hack()
try:
_silero_vad_model, utils = torch.hub.load(repo_or_dir=repo_or_dir, model="silero_vad", onnx=onnx, source=source)
except ImportError as err:
raise RuntimeError(f"Please install what is needed to use the silero VAD (or use another VAD method)") from err
except Exception as err:
raise RuntimeError(f"Problem when installing silero with version {version}. Check versions here: https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models") from err
finally:
if need_folder_hack:
if os.path.exists(repo_or_dir_master):
os.remove(repo_or_dir_master)
if tmp_folder:
shutil.move(tmp_folder, repo_or_dir_master)
assert os.path.isdir(repo_or_dir_specific), f"Unexpected situation: missing {repo_or_dir_specific}"
_silero_get_speech_ts = utils[0]
# Cheap normalization of the volume
audio = audio / max(0.1, audio.abs().max())
segments = _silero_get_speech_ts(audio, _silero_vad_model,
min_speech_duration_ms = round(min_speech_duration * 1000),
min_silence_duration_ms = round(min_silence_duration * 1000),
return_seconds = False,
)
elif method == "auditok":
import auditok
# Cheap normalization of the volume
audio = audio / max(0.1, audio.abs().max())
data = (audio.numpy() * 32767).astype(np.int16).tobytes()
segments = auditok.split(
data,
sampling_rate=SAMPLE_RATE, # sampling frequency in Hz
channels=1, # number of channels
sample_width=2, # number of bytes per sample
min_dur=min_speech_duration, # minimum duration of a valid audio event in seconds
max_dur=len(audio)/SAMPLE_RATE, # maximum duration of an event
max_silence=min_silence_duration, # maximum duration of tolerated continuous silence within an event
energy_threshold=50,
drop_trailing_silence=True,
)
segments = [{"start": s._meta.start * SAMPLE_RATE, "end": s._meta.end * SAMPLE_RATE} for s in segments]
else:
raise ValueError(f"Got unexpected VAD method {method}")
if dilatation > 0:
dilatation = round(dilatation * SAMPLE_RATE)
new_segments = []
for seg in segments:
new_seg = {
"start": max(0, seg["start"] - dilatation),
"end": min(len(audio), seg["end"] + dilatation)
}
if len(new_segments) > 0 and new_segments[-1]["end"] >= new_seg["start"]:
new_segments[-1]["end"] = new_seg["end"]
else:
new_segments.append(new_seg)
segments = new_segments
ratio = 1 if output_sample else 1 / SAMPLE_RATE
if ratio != 1:
for seg in segments:
seg["start"] *= ratio
seg["end"] *= ratio
if output_sample:
for seg in segments:
seg["start"] = round(seg["start"])
seg["end"] = round(seg["end"])
return segments
def remove_non_speech(audio,
use_sample=False,
min_speech_duration=0.1,
min_silence_duration=1,
method="silero",
plot=False,
):
"""
Remove non-speech segments from audio (using Silero VAD),
glue the speech segments together and return the result along with
a function to convert timestamps from the new audio to the original audio
parameters:
audio: torch.Tensor
audio data *in 16kHz*
use_sample: bool
if True, return start and end in samples instead of seconds
min_speech_duration: float
minimum duration (in sec) of a speech segment
min_silence_duration: float
minimum duration (in sec) of a silence segment
method: str
method to use to remove non-speech segments
plot: bool or str
if True, plot the result.
If a string, save the plot to the given file
"""
segments = get_vad_segments(
audio,
output_sample=True,
min_speech_duration=min_speech_duration,
min_silence_duration=min_silence_duration,
method=method,
)
segments = [(seg["start"], seg["end"]) for seg in segments]
if len(segments) == 0:
segments = [(0, audio.shape[-1])]
audio_speech = torch.cat([audio[..., s:e] for s,e in segments], dim=-1)
if plot:
import matplotlib.pyplot as plt
plt.figure()
max_num_samples = 10000
step = (audio.shape[-1] // max_num_samples) + 1
times = [i*step/SAMPLE_RATE for i in range((audio.shape[-1]-1) // step + 1)]
plt.plot(times, audio[::step])
for s, e in segments:
plt.axvspan(s/SAMPLE_RATE, e/SAMPLE_RATE, color='red', alpha=0.1)
if isinstance(plot, str):
plt.savefig(f"{plot}.VAD.jpg", bbox_inches='tight', pad_inches=0)
else:
plt.show()
if not use_sample:
segments = [(float(s)/SAMPLE_RATE, float(e)/SAMPLE_RATE) for s,e in segments]
return audio_speech, lambda t, t2 = None: do_convert_timestamps(segments, t, t2)
def do_convert_timestamps(segments, t, t2 = None):
"""
Convert timestamp from audio without non-speech segments to original audio (with non-speech segments)
parameters:
segments: list of tuple (start, end) corresponding to non-speech segments in original audio
t: timestamp to convert
t2: second timestamp to convert (optional), when the two timestamps should be in the same segment
"""
assert len(segments)
ioffset = 0 # Input offset
ooffset = 0 # Output offset
ipreviousend = 0
result = []
for istart, iend in segments:
ostart = ooffset
oend = ostart + (iend - istart)
ooffset = oend
ioffset += istart - ipreviousend
ipreviousend = iend
t_in = t <= oend
t2_in = t_in if t2 is None else t2 <= oend
if t_in or t2_in:
result.append([
max(istart, min(iend, ioffset + t)),
max(istart, min(iend, ioffset + t2)) if t2 is not None else None
])
if t_in and t2_in:
break
if not len(result):
result.append(
[ioffset + t, ioffset + t2 if t2 is not None else None]
)
if len(result) > 1:
# Minimize difference between durations
result = sorted(result, key=lambda x: abs(abs(t2-t) - abs(x[1]-x[0])))
result = result[0]
if t2 is None:
result = round(result[0], 2)
else:
result = [round(x, 2) for x in result]
return result
def remove_last_null_duration_words(transcription, words, recompute_text=False):
"""
Remove words with null duration happening at the end of a chunk (probable Whisper hallucinations)
"""
# First group segments by audio chunk
segments_groups = {}
seek = None
current_chunk = -1
for i, segment in enumerate(transcription["segments"]):
if segment["seek"] != seek:
current_chunk += 1
seek = segment["seek"]
segments_groups[i] = current_chunk
# Remove words with null duration happening at the end of a chunk
current_chunk = -1
is_last_empty = False
to_remove = []
for i, word in enumerate(words[::-1]): # Reverse order
i = len(words) - i - 1
empty = (word["start"] == word["end"])
idx_segment = word["idx_segment"]
group = segments_groups[idx_segment]
if current_chunk != group:
is_last_empty = empty
current_chunk = group
elif not empty:
is_last_empty = False
if is_last_empty:
# Remove word
to_remove.append(i)
# Shorten text of segment
full_word = "".join(word["tokens"])
logger.debug(f"Removing word {i+1}/{len(words)} \"{full_word}\" with empty duration at the end of segment {idx_segment+1}/{len(transcription['segments'])}")
segment = transcription["segments"][idx_segment]
text = segment["text"]
if not text.endswith(full_word): # see issue #62
if text.endswith(full_word[:-1]):
full_word = full_word[:-1]
elif text[:-1].endswith(full_word):
text = text[:-1]
else:
raise RuntimeError(f"\"{text}\" not ending with \"{full_word}\"")
text = text[:-len(full_word)]
if i > 0 and words[i-1]["idx_segment"] == idx_segment:
segment["text"] = text
else:
logger.debug(f"Removing empty segment {idx_segment}")
# Remove segment with no more words
transcription["segments"].pop(idx_segment)
for j in range(i+1, len(words)):
words[j]["idx_segment"] -= 1
recompute_text = True
for i in to_remove:
words.pop(i) # Warning: inplace modification
if recompute_text:
transcription["text"] = "".join([s["text"] for s in transcription["segments"]])
return transcription, words
def ensure_increasing_positions(segments, min_duration=0):
"""
Ensure that "start" and "end" come in increasing order
"""
has_modified_backward = False
previous_end = 0
for i, seg in enumerate(segments):
if seg["start"] < previous_end:
assert i > 0
new_start = round_timestamp((previous_end + seg["start"]) / 2)
if new_start < segments[i-1]["start"] + min_duration:
new_start = previous_end
else:
segments[i-1]["end"] = new_start
has_modified_backward = True
seg["start"] = new_start
if seg["end"] <= seg["start"] + min_duration:
seg["end"] = seg["start"] + min_duration
previous_end = seg["end"]
if has_modified_backward:
return ensure_increasing_positions(segments, min_duration)
previous_end = 0
for seg in segments:
seg["start"] = round_timestamp(seg["start"])
seg["end"] = round_timestamp(seg["end"])
assert seg["start"] >= previous_end, f"Got segment {seg} coming before the previous finishes ({previous_end} > {seg['start']})"
assert seg["end"] >= seg["start"], f"Got segment {seg} with end < start"
previous_end = seg["end"]
return segments
## Some utilities for writing transcripts to files
def flatten(list_of_lists, key = None):
for sublist in list_of_lists:
for item in sublist.get(key, []) if key else sublist:
yield item
def remove_keys(list_of_dicts, key):
for d in list_of_dicts:
yield {k: d[k] for k in d.keys() - {key}}
def write_csv(transcript, file, sep = ",", text_first=True, format_timestamps=None, header=False):
writer = csv.writer(file, delimiter=sep)
if format_timestamps is None: format_timestamps = lambda x: x
if header is True:
header = ["text", "start", "end"] if text_first else ["start", "end", "text"]
if header:
writer.writerow(header)
if text_first:
writer.writerows(
[[segment["text"].strip(), format_timestamps(segment["start"]), format_timestamps(segment["end"])] for segment in transcript]
)
else:
writer.writerows(
[[format_timestamps(segment["start"]), format_timestamps(segment["end"]), segment["text"].strip()] for segment in transcript]
)
# https://stackoverflow.com/questions/66588715/runtimeerror-cudnn-error-cudnn-status-not-initialized-using-pytorch
# CUDA initialization may fail on old GPU card
def force_cudnn_initialization(device=None, s=32):
if device is None:
device = get_default_device()
torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=device), torch.zeros(s, s, s, s, device=device))
def get_default_device():
if torch.cuda.is_available():
device = "cuda"
elif find_spec('torch.xpu') is not None and torch.xpu.is_available():
device = "xpu"
else:
device = "cpu"
return device
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
# highly correlated to the word-level timing, i.e. the alignment between audio and text tokens.
_ALIGNMENT_HEADS = {
"tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00",
"tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO",
"base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00",
"base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m",
"small.en": b"ABzY8>?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00",
"small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000",
"medium.en": b"ABzY8usPae0{>%R7<zz_OvQ{)4kMa0BMw6u5rT}kRKX;$NfYBv00*Hl@qhsU00",
"medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9",
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
"large-v2": b'ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj',
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
}
_PARAMETERS_TO_MODEL_NAME = {
37184256 : "tiny.en",
37184640 : "tiny",
71825408 : "base.en",
71825920 : "base",
240582144 : "small.en",
240582912 : "small",
762320896 : "medium.en",
762321920 : "medium",
1541384960 : "large",
1541570560 : "large-v3",
}
def get_alignment_heads(model, max_top_layer=3):
if hasattr(model, "alignment_heads"): # Since version 20230306
return model.alignment_heads
num_parameters = _get_number_of_parameters(model)
num_layers = model.dims.n_text_layer
num_heads = model.dims.n_text_head
if num_parameters not in _PARAMETERS_TO_MODEL_NAME:
logger.warning("Could not retrieve alignment heads : taking all attention heads from the top layers")
return None
model_name = _PARAMETERS_TO_MODEL_NAME[num_parameters]
if model_name == "large":
if next(model.parameters())[0,0,0] > 0:
model_name = "large-v1"
else:
model_name = "large-v2"
return _get_alignment_heads(model_name, num_layers, num_heads)
def _get_alignment_heads(model_name, num_layers, num_heads):
dump = _ALIGNMENT_HEADS[model_name]
array = np.frombuffer(gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
mask = torch.from_numpy(array).reshape(num_layers, num_heads)
alignment_heads = mask.to_sparse()
return alignment_heads
def _get_number_of_parameters(model):
return sum(p.numel() for p in model.parameters())
from typing import Optional, Union
def load_model(
name: str,
device: Optional[Union[str, torch.device]] = None,
download_root: str = None,
in_memory: bool = False,
):
extension = os.path.splitext(name)[-1] if os.path.isfile(name) else None
if name in whisper.available_models() or extension == ".pt":
return whisper.load_model(name, device=device, download_root=download_root, in_memory=in_memory)
# Otherwise, assume transformers
if extension in [".ckpt", ".bin"]:
model_path = name
else:
# Search for the cached file (download if necessary)
try:
import transformers
except ImportError:
raise ImportError(f"If you are trying to download a HuggingFace model with {name}, please install first the transformers library")
from transformers.utils import cached_file
try:
model_path = cached_file(name, "pytorch_model.bin", cache_dir=download_root, use_auth_token=None, revision=None)
except Exception as e:
try:
if isinstance(e, OSError):
model_path = cached_file(name, "whisper.ckpt", cache_dir=download_root, use_auth_token=None, revision=None)
else:
raise e
except:
raise RuntimeError(f"Original error: {e}\nCould not find model {name} from HuggingFace nor local folders.")
# Load HF Model
hf_state_dict = torch.load(model_path, map_location="cpu")
# Rename layers
for key in list(hf_state_dict.keys())[:]:
new_key = hf_to_whisper_states(key)
if new_key is None:
hf_state_dict.pop(key)
elif new_key != key:
hf_state_dict[new_key] = hf_state_dict.pop(key)
# Init Whisper Model and replace model weights
dims = whisper.model.ModelDimensions(**states_to_dim(hf_state_dict))
if "proj_out.weight" in hf_state_dict:
hf_state_dict["decoder.proj_out.weight"] = hf_state_dict.pop("proj_out.weight")
logger.warning("Using untied projection layer")
whisper_model = WhisperUntied(dims)
else:
whisper_model = whisper.model.Whisper(dims)
whisper_model.load_state_dict(hf_state_dict)
del hf_state_dict
if hasattr(whisper_model, "alignment_heads"):
del whisper_model.alignment_heads # Will be recomputed later
whisper_model = whisper_model.to(device)
return whisper_model
# Credit: https://github.com/openai/whisper/discussions/830
def hf_to_whisper_states(text):
# From Speechbrain
if text == "_mel_filters":
return None
# From PEFT
if "default" in text:
# print(f"WARNING: Ignoring {text}")
return None
if text.startswith("base_model.model."):
text = text[len("base_model.model."):]
text = re.sub('.layers.', '.blocks.', text)
text = re.sub('.self_attn.', '.attn.', text)
text = re.sub('.q_proj.', '.query.', text)
text = re.sub('.k_proj.', '.key.', text)
text = re.sub('.v_proj.', '.value.', text)
text = re.sub('.out_proj.', '.out.', text)
text = re.sub('.fc1.', '.mlp.0.', text)
text = re.sub('.fc2.', '.mlp.2.', text)
text = re.sub('.fc3.', '.mlp.3.', text)
text = re.sub('.fc3.', '.mlp.3.', text)
text = re.sub('.encoder_attn.', '.cross_attn.', text)
text = re.sub('.cross_attn.ln.', '.cross_attn_ln.', text)
text = re.sub('.embed_positions.weight', '.positional_embedding', text)
text = re.sub('.embed_tokens.', '.token_embedding.', text)
text = re.sub('model.', '', text)
text = re.sub('attn.layer_norm.', 'attn_ln.', text)
text = re.sub('.final_layer_norm.', '.mlp_ln.', text)
text = re.sub('encoder.layer_norm.', 'encoder.ln_post.', text)
text = re.sub('decoder.layer_norm.', 'decoder.ln.', text)
return text
def states_to_dim(state_dict):
n_audio_state = len(state_dict['encoder.ln_post.bias'])
n_text_state = len(state_dict["decoder.ln.bias"])
return {
"n_mels": state_dict["encoder.conv1.weight"].shape[1], # 80
"n_vocab": state_dict["decoder.token_embedding.weight"].shape[0], # 51864 / 51865
"n_audio_ctx": state_dict["encoder.positional_embedding"].shape[0], # 1500
"n_audio_state": n_audio_state, # 384 / 512 / 768 / 1024 / 1280
"n_audio_head": n_audio_state // 64, # 6 / 8 / 12 / 16 / 20
"n_audio_layer": len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "encoder.blocks." in k])), # 4 / 6 / 12 / 24 / 32
"n_text_ctx": state_dict["decoder.positional_embedding"].shape[0], # 448
"n_text_state": n_text_state, # 384 / 512 / 768 / 1024 / 1280
"n_text_head": n_text_state // 64, # 6 / 8 / 12 / 16 / 20
"n_text_layer": len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "decoder.blocks." in k])), # 4 / 6 / 12 / 24 / 32
}
class TextDecoderUntied(whisper.model.TextDecoder):
"""
Same as TextDecoder but with untied weights
"""
def __init__(self, *args, **kwargs):
import torch
super().__init__(*args, **kwargs)
n_vocab, n_state = self.token_embedding.weight.shape
self.proj_out = torch.nn.Linear(n_state, n_vocab, bias=False)
def forward(self, x, xa, kv_cache = None):
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
x = x.to(xa.dtype)
for block in self.blocks:
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
x = self.ln(x)
# logits = self.proj_out(x).float()
# logits = (x @ torch.transpose(self.proj_out.weight.to(x.dtype), 0, 1)).float()
logits = self.proj_out.to(x.dtype)(x).float()
return logits
class WhisperUntied(whisper.model.Whisper):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.decoder = TextDecoderUntied(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
)
def cli():
import os
import sys
import argparse
import json
from whisper.utils import str2bool, optional_float, optional_int
try:
# Old whisper version # Before https://github.com/openai/whisper/commit/da600abd2b296a5450770b872c3765d0a5a5c769
from whisper.utils import write_txt, write_srt, write_vtt
write_tsv = lambda transcript, file: write_csv(transcript, file, sep="\t", header=True, text_first=False, format_timestamps=lambda x: round(1000 * x))
except ImportError:
# New whisper version
from whisper.utils import get_writer
def do_write(transcript, file, output_format):
writer = get_writer(output_format, os.path.curdir)
try:
return writer.write_result({"segments": transcript}, file)
except TypeError:
# Version > 20230314
return writer.write_result({"segments": list(transcript)}, file, {
"highlight_words": False,
"max_line_width": None,
"max_line_count": None,
})
def get_do_write(output_format):
return lambda transcript, file: do_write(transcript, file, output_format)
write_txt = get_do_write("txt")
write_srt = get_do_write("srt")
write_vtt = get_do_write("vtt")
write_tsv = get_do_write("tsv")
parser = argparse.ArgumentParser(
description='Transcribe a single audio with whisper and compute word timestamps',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('-v', '--version', help="show version and exit", action='version', version=f'{__version__}')
parser.add_argument('--versions', help="show versions (of whisper-timestamped and whisper) and exit", action='version',
version=f'{__version__} -- Whisper {whisper.__version__} in {os.path.realpath(os.path.dirname(whisper.__file__))}')
parser.add_argument('audio', help="audio file(s) to transcribe", nargs='+')
parser.add_argument('--model', help=f"name of the Whisper model to use. Examples: {', '.join(whisper.available_models())}", default="small")
parser.add_argument("--model_dir", default=None, help="the path to save model files; uses ~/.cache/whisper by default", type=str)
parser.add_argument("--device", default=get_default_device(), help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", default=None, help="directory to save the outputs", type=str)
valid_formats = ["txt", "vtt", "srt", "tsv", "csv", "json"]
def str2output_formats(string):
if string == "all":
return valid_formats
formats = string.split(",")
for format in formats:
if format not in valid_formats:
raise ValueError(f"Expected one of {valid_formats}, got {format}")
return formats
parser.add_argument("--output_format", "-f", default="all", help=f"Format(s) of the output file(s). Possible formats are: {', '.join(valid_formats)}. Several formats can be specified by using commas (ex: \"json,vtt,srt\"). By default (\"all\"), all available formats will be produced", type=str2output_formats)
parser.add_argument("--task", default="transcribe", help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')", choices=["transcribe", "translate"], type=str)
parser.add_argument('--language', help=f"language spoken in the audio, specify None to perform language detection.", choices=sorted(whisper.tokenizer.LANGUAGES.keys()) + sorted([k.title() for k in whisper.tokenizer.TO_LANGUAGE_CODE.keys()]), default=None)
# f"{', '.join(sorted(k+'('+v+')' for k,v in whisper.tokenizer.LANGUAGES.items()))}
parser.add_argument('--vad', default=False, help="whether to run Voice Activity Detection (VAD) to remove non-speech segment before applying Whisper model (removes hallucinations). Can be: True, False, silero, silero:3.1 (or another version), or autitok. Some additional libraries might be needed")
parser.add_argument('--detect_disfluencies', default=False, help="whether to try to detect disfluencies, marking them as special words [*]", type=str2bool)
parser.add_argument('--recompute_all_timestamps', default=not TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, help="Do not rely at all on Whisper timestamps (Experimental option: did not bring any improvement, but could be useful in cases where Whipser segment timestamp are wrong by more than 0.5 seconds)", type=str2bool)
parser.add_argument("--punctuations_with_words", default=True, help="whether to include punctuations in the words", type=str2bool)
parser.add_argument("--temperature", default=0.0, help="temperature to use for sampling", type=float)
parser.add_argument("--best_of", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of candidates when sampling with non-zero temperature")
parser.add_argument("--beam_size", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of beams in beam search, only applicable when temperature is zero")
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
parser.add_argument("--suppress_tokens", default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations", type=str)
parser.add_argument("--initial_prompt", default=None, help="optional text to provide as a prompt for the first window.", type=str)
parser.add_argument("--condition_on_previous_text", default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop", type=str2bool)
parser.add_argument("--fp16", default=None, help="whether to perform inference in fp16; Automatic by default (True if GPU available, False otherwise)", type=str2bool)
parser.add_argument("--temperature_increment_on_fallback", default=0.0 if USE_EFFICIENT_BY_DEFAULT else 0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below", type=optional_float)
parser.add_argument("--compression_ratio_threshold", default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed", type=optional_float)
parser.add_argument("--logprob_threshold", default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed", type=optional_float)
parser.add_argument("--no_speech_threshold", default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence", type=optional_float)
parser.add_argument("--threads", default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS", type=optional_int)
parser.add_argument("--compute_confidence", default=True, help="whether to compute confidence scores for words", type=str2bool)
parser.add_argument("--verbose", type=str2bool, default=False, help="whether to print out the progress and debug messages of Whisper")
parser.add_argument('--plot', help="plot word alignments (save the figures if an --output_dir is specified, otherwhise just show figures that have to be closed to continue)", default=False, action="store_true")
parser.add_argument('--debug', help="print some debug information about word alignement", default=False, action="store_true")
class ActionSetAccurate(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
assert nargs is None
super().__init__(option_strings, dest, nargs=0, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, "best_of", 5)
setattr(namespace, "beam_size", 5)
setattr(namespace, "temperature_increment_on_fallback", 0.2)
parser.add_argument('--accurate', help="Shortcut to use the same default option as in Whisper (best_of=5, beam_search=5, temperature_increment_on_fallback=0.2)", action=ActionSetAccurate)
class ActionSetEfficient(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
assert nargs is None
super().__init__(option_strings, dest, nargs=0, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, "best_of", None)
setattr(namespace, "beam_size", None)
setattr(namespace, "temperature_increment_on_fallback", None)
parser.add_argument('--efficient', help="Shortcut to disable beam size and options that requires to sample several times, for an efficient decoding", action=ActionSetEfficient)
parser.add_argument('--naive', help="use naive approach, doing inference twice (once to get the transcription, once to get word timestamps and confidence scores).", default=False, action="store_true")
args = parser.parse_args().__dict__
args.pop("accurate")
args.pop("efficient")
temperature = args.pop("temperature")
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
if temperature_increment_on_fallback:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
threads = args.pop("threads")
if threads:
torch.set_num_threads(threads)
audio_files = args.pop("audio")
model = args.pop("model")
device = args.pop("device")
model_dir = args.pop("model_dir")
if device.lower().startswith("cuda"):
force_cudnn_initialization(device)
output_format = args.pop("output_format")
model = load_model(model, device=device, download_root=model_dir)
plot_word_alignment = args.pop("plot")
debug = args.pop("debug")
logging.basicConfig()
if debug:
logger.setLevel(logging.DEBUG)
# This supposes to plug a logger with name "WHISPER" into Whisper source code (no harm if it's not set)
logging.getLogger("WHISPER").setLevel(logging.DEBUG)
output_dir = args.pop("output_dir")
if output_dir and not os.path.isdir(output_dir):
os.makedirs(output_dir)
args["naive_approach"] = args.pop("naive")
args["remove_punctuation_from_words"] = not args.pop("punctuations_with_words")
args["compute_word_confidence"] = args.pop("compute_confidence")
args["trust_whisper_timestamps"] = not args.pop("recompute_all_timestamps")
for audio_path in audio_files:
outname = os.path.join(output_dir, os.path.basename(audio_path)) if output_dir else None
result = transcribe_timestamped(
model, audio_path,
temperature=temperature,
plot_word_alignment=outname if (outname and plot_word_alignment) else plot_word_alignment,
**args
)
if output_dir:
if "json" in output_format:
# save JSON
with open(outname + ".words.json", "w", encoding="utf-8") as js:
json.dump(result, js, indent=2, ensure_ascii=False)
# save TXT
if "txt" in output_format:
with open(outname + ".txt", "w", encoding="utf-8") as txt:
write_txt(result["segments"], file=txt)
# save VTT
if "vtt" in output_format:
with open(outname + ".vtt", "w", encoding="utf-8") as vtt:
write_vtt(remove_keys(result["segments"], "words"), file=vtt)
with open(outname + ".words.vtt", "w", encoding="utf-8") as vtt:
write_vtt(flatten(result["segments"], "words"), file=vtt)
# save SRT
if "srt" in output_format:
with open(outname + ".srt", "w", encoding="utf-8") as srt:
write_srt(remove_keys(result["segments"], "words"), file=srt)
with open(outname + ".words.srt", "w", encoding="utf-8") as srt:
write_srt(flatten(result["segments"], "words"), file=srt)
# save CSV
if "csv" in output_format:
with open(outname + ".csv", "w", encoding="utf-8") as csv:
write_csv(result["segments"], file=csv)
with open(outname + ".words.csv", "w", encoding="utf-8") as csv:
write_csv(flatten(result["segments"], "words"), file=csv)
# save TSV
if "tsv" in output_format:
with open(outname + ".tsv", "w", encoding="utf-8") as csv:
write_tsv(result["segments"], file=csv)
with open(outname + ".words.tsv", "w", encoding="utf-8") as csv:
write_tsv(flatten(result["segments"], "words"), file=csv)
elif not args["verbose"]:
json.dump(filtered_keys(result), sys.stdout, indent=2, ensure_ascii=False)
def filtered_keys(result, keys = [
"text",
"segments", "words",
"language",
"start",
"end",
"confidence",
"language_probs",
]):
if isinstance(result, dict):
return {k: (filtered_keys(v, keys) if k not in ["language_probs"] else v) for k, v in result.items() if k in keys}
if isinstance(result, list):
return [filtered_keys(v, keys) for v in result]
if isinstance(result, float):
return round(result, 2)
return result
if __name__ == "__main__":
cli() |