File size: 123,388 Bytes
2cba4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
#!/usr/bin/env python3

__author__ = "Jérôme Louradour"
__credits__ = ["Jérôme Louradour"]
__license__ = "GPLv3"
__version__ = "1.14.2"

# Set some environment variables
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' # Remove warning "This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)..."
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' # GPU in the right order

# Whisper and Torch
import whisper
import torch
import torch.nn.functional as F

from importlib.util import find_spec
if find_spec("intel_extension_for_pytorch") is not None:
    try:
        import intel_extension_for_pytorch
    except ImportError:
        pass

# For alignment
import numpy as np
import dtw
# from scipy.signal import medfilt as median_filter
from scipy.ndimage import median_filter # faster owing to https://github.com/openai/whisper/commit/f0083e7eb20d032390e42f6f6039947fa8669c93
from scipy.signal import find_peaks

# Additional
import string
import csv
import sys
import gzip, base64
import copy
import re
import shutil

# Constant variables
from whisper.utils import format_timestamp
from whisper.audio import N_FRAMES, HOP_LENGTH, SAMPLE_RATE  # 3000, 160, 16000
AUDIO_SAMPLES_PER_TOKEN = HOP_LENGTH * 2                     # 320
AUDIO_TIME_PER_TOKEN = AUDIO_SAMPLES_PER_TOKEN / SAMPLE_RATE # 0.02 (sec)
SEGMENT_DURATION = N_FRAMES * HOP_LENGTH / SAMPLE_RATE       # 30.0 (sec)

# Logs
import logging
logger = logging.getLogger("whisper_timestamped")

USE_EFFICIENT_BY_DEFAULT = True
TRUST_WHISPER_TIMESTAMP_BY_DEFAULT = True
DISFLUENCY_MARK = "[*]"

try:
    whisper_version = whisper.__version__
except NameError:
    whisper_version = ""
WHIPSER_GE_20230306 = whisper_version >= "20230306"
WHIPSER_GE_20230308 = whisper_version >= "20230308"

def transcribe_timestamped(
    # Main Whisper options
    model,
    audio,
    language=None,
    task="transcribe",

    # Additional options for word alignment
    remove_punctuation_from_words=False,
    compute_word_confidence=True,
    include_punctuation_in_confidence=False,
    refine_whisper_precision=0.5,
    min_word_duration=0.02, # Was 0.04 before 1.11
    plot_word_alignment=False,
    word_alignement_most_top_layers=None, # Was 6 before 1.9
    remove_empty_words=False,

    # Reproducibility
    seed=1234,

    vad=False,
    detect_disfluencies=False,
    trust_whisper_timestamps=TRUST_WHISPER_TIMESTAMP_BY_DEFAULT,
    naive_approach=False,

    # Other Whisper options
    temperature=0.0 if USE_EFFICIENT_BY_DEFAULT else (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    best_of=None,
    beam_size=None,
    patience=None,
    length_penalty=None,
    compression_ratio_threshold=2.4,
    logprob_threshold=-1.0,
    no_speech_threshold=0.6,
    fp16=None,
    condition_on_previous_text=True,
    initial_prompt=None,
    suppress_tokens="-1",
    sample_len=None,
    verbose=False,
):
    """
    Transcribe an audio file using Whisper

    Parameters
    ----------
    model: Whisper
        The Whisper model instance.

    audio: Union[str, np.ndarray, torch.Tensor]
        The path to the audio file to open, or the audio waveform in 16kHz.

    language: str
        The language to use for the transcription. If None, the language is detected automatically.

    task: str
        The task to perform: either "transcribe" or "translate".

    remove_punctuation_from_words: bool
        If False, words will be glued with the next punctuation mark (if any).
        If True, there will be no punctuation mark in the `words[:]["text"]` list.
        It only affects these strings; This has no influence on the computation of the word confidence, whatever the value of `include_punctuation_in_confidence` is.
    
    include_punctuation_in_confidence: bool
        Whether to include proba of punctuation in the computation of the (previous) word confidence.

    compute_word_confidence: bool
        Whether to compute word confidence.
        If True, a finer confidence for each segment will be computed as well.

    vad: bool or str in ["silero", "silero:3.1", "auditok"]
        Whether to perform voice activity detection (VAD) on the audio file, to remove silent parts before transcribing with Whisper model.
        This should decrease hallucinations from the Whisper model.
        When set to True, the default VAD algorithm is used (silero).
        When set to a string, the corresponding VAD algorithm is used (silero, silero:3.1 or auditok).
        Note that the library for the corresponding VAD algorithm must be installed.

    detect_disfluencies: bool
        Whether to detect disfluencies (i.e. hesitations, filler words, repetitions, corrections, etc.) that Whisper model might have omitted in the transcription.
        This should make the word timestamp prediction more accurate.
        And probable disfluencies will be marked as special words "[*]".

    trust_whisper_timestamps: bool
        Whether to rely on Whisper's timestamps to get approximative first estimate of segment positions (up to refine_whisper_precision).

    refine_whisper_precision: float
        How much can we refine Whisper segment positions, in seconds. Must be a multiple of 0.02.

    min_word_duration: float
        Minimum duration of a word, in seconds. If a word is shorter than this, timestamps will be adjusted.

    plot_word_alignment: bool
        Whether to plot the word alignment for each segment. matplotlib must be installed to use this option.

    remove_empty_words: bool
        Whether to remove words with no duration occuring at the end of segments (probable Whisper hallucinations).

    seed: int
        Random seed to use for temperature sampling, for the sake of reproducibility.
        Choose None for unpredictable randomness.

    naive_approach: bool
        Force the naive approach that consists in decoding twice the audio file, once to get the transcritpion and once with the decoded tokens to get the alignment.
        Note that this approach is used anyway when beam_size is not None and/or when the temperature is a list with more than one element.

    temperature: float
        Temperature for sampling.

    compression_ratio_threshold: float
        If the gzip compression ratio is above this value, treat as failed.

    logprob_threshold: float
        If the average log probability over sampled tokens is below this value, treat as failed.

    no_speech_threshold: float
        If the no_speech probability is higher than this value AND the average log probability
        over sampled tokens is below `logprob_threshold`, consider the segment as silent.

    condition_on_previous_text: bool
        if True, the previous output of the model is provided as a prompt for the next window;
        disabling may make the text inconsistent across windows, but the model becomes less prone to
        getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.

    initial_prompt: str
        Optional text to provide as a prompt for the first window.

    suppress_tokens: str
        Comma-separated list of token ids to suppress during sampling;
        '-1' will suppress most special characters except common punctuations.

    verbose: bool
        Whether to display the text being decoded to the console. If True, displays all the details,
        If False, displays minimal details. If None, does not display anything

    Returns
    -------
    A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
    the spoken language ("language"), which is detected when `decode_options["language"]` is None.
    """

    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

    # Check input options
    assert refine_whisper_precision >= 0 and refine_whisper_precision / AUDIO_TIME_PER_TOKEN == round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN), f"refine_whisper_precision must be a positive multiple of {AUDIO_TIME_PER_TOKEN}"
    refine_whisper_precision_nframes = round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN)
    assert min_word_duration >= 0, f"min_word_duration must be a positive number"
    assert word_alignement_most_top_layers is None or word_alignement_most_top_layers > 0, f"word_alignement_most_top_layers must be a strictly positive number"

    if isinstance(temperature, (list, tuple)) and len(temperature) == 1:
        temperature = temperature[0]
    if isinstance(temperature, (list, tuple)):
        # temperature fallback
        naive_approach = True
    elif temperature > 0 and best_of is not None and best_of > 1:
        naive_approach = True
    if beam_size is not None:
        # beam-search
        naive_approach = True

    # Input options
    vad = check_vad_method(vad)
    if isinstance(model, str):
        model = load_model(model)
    if fp16 is None:
        fp16 = model.device != torch.device("cpu")

    # Safety check
    input_stride = N_FRAMES // model.dims.n_audio_ctx
    time_precision = input_stride * HOP_LENGTH / SAMPLE_RATE
    assert time_precision == AUDIO_TIME_PER_TOKEN

    alignment_heads = get_alignment_heads(model) if word_alignement_most_top_layers is None else None
    if alignment_heads is None and word_alignement_most_top_layers is None:
        word_alignement_most_top_layers = 6

    alignment_options = dict(
            remove_punctuation_from_words=remove_punctuation_from_words,
            compute_word_confidence=compute_word_confidence,
            include_punctuation_in_confidence=include_punctuation_in_confidence,
            detect_disfluencies=detect_disfluencies,
            refine_whisper_precision_nframes=refine_whisper_precision_nframes,
            plot_word_alignment=plot_word_alignment,
            word_alignement_most_top_layers=word_alignement_most_top_layers,
            alignment_heads=alignment_heads,
    )
    whisper_options = dict(
            language=language,
            task=task,
            fp16=fp16,
            temperature=temperature,
            best_of=best_of,
            beam_size=beam_size,
            patience=patience,
            length_penalty=length_penalty,
            condition_on_previous_text=condition_on_previous_text,
            initial_prompt=initial_prompt,
            suppress_tokens=suppress_tokens,
            sample_len=sample_len,
            verbose=verbose if (not vad or verbose is not True) else False,
    )
    other_options = dict(
        no_speech_threshold=no_speech_threshold,
        logprob_threshold=logprob_threshold,
        compression_ratio_threshold=compression_ratio_threshold,
    )

    if vad:
        audio = get_audio_tensor(audio)
        audio, convert_timestamps = remove_non_speech(audio, method=vad, plot=plot_word_alignment)

    global num_alignment_for_plot
    num_alignment_for_plot = 0

    if naive_approach:
        (transcription, words) = _transcribe_timestamped_naive(model, audio,
                                                               min_word_duration=0.0, # Was 0.04 before 1.11
                                                               trust_whisper_timestamps=trust_whisper_timestamps,
                                                               **alignment_options, **whisper_options, **other_options)
    else:
        (transcription, words) = _transcribe_timestamped_efficient(model, audio,
                                                                   trust_whisper_timestamps=trust_whisper_timestamps,
                                                                   **alignment_options, **whisper_options, **other_options)
    if remove_empty_words:
        # Remove words with empty duration happening at the end of segments, to remove some hallucinations
        transcription, words = remove_last_null_duration_words(transcription, words, recompute_text=True)

    # Refine word positions
    ensure_increasing_positions(words, min_duration=min_word_duration if trust_whisper_timestamps else 0)
    
    # Combine words and segments
    whisper_segments = transcription["segments"]
    for word in words:
        if verbose and not naive_approach and not vad:
            print_timestamped(word)
        word.pop("tokens")
        word.pop("tokens_indices")
        if "avg_logprob_reliable" in word:
            word.pop("avg_logprob_reliable")
        idx_segment = word.pop("idx_segment")
        assert idx_segment < len(whisper_segments), f"Fatal error: Got unexpected segment index {idx_segment} >= {len(whisper_segments)}"
        segment = whisper_segments[idx_segment]
        if "words" in segment:
            segment["words"].append(word)
        else:
            segment["words"] = [word]
            if refine_whisper_precision:
                segment["start"] = word["start"]
        if refine_whisper_precision:
            segment["end"] = word["end"]

    if vad:
        # Recompute timestamps to match the original audio
        for segment in whisper_segments:
            for word in segment.get("words", []):
                word["start"], word["end"] = convert_timestamps(word["start"], word["end"])
                if verbose:
                    print_timestamped(word)
            if refine_whisper_precision and len(segment.get("words", [])):
                segment["start"] = segment["words"][0]["start"]
                segment["end"] = segment["words"][-1]["end"]
            else:
                segment["start"], segment["end"] = convert_timestamps(segment["start"], segment["end"])

    return transcription

def _transcribe_timestamped_efficient(
    model,
    audio,
    remove_punctuation_from_words,
    compute_word_confidence,
    include_punctuation_in_confidence,
    refine_whisper_precision_nframes,
    alignment_heads,
    plot_word_alignment,
    word_alignement_most_top_layers,
    detect_disfluencies,
    trust_whisper_timestamps,
    use_timestamps_for_alignment = True,
    # Whisper specific options
    **whisper_options,
):

    # Get options
    sample_len = whisper_options["sample_len"]
    temperature = whisper_options["temperature"]
    no_speech_threshold = whisper_options["no_speech_threshold"]
    logprob_threshold = whisper_options["logprob_threshold"]
    verbose = whisper_options["verbose"]
    # Note: "on-the-fly" verbose is not implementable in the current state (we don't know the absolute position of the current chunk). See issue #18
    verbose_bugged = False
    whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"]  # We will print intermediate results ourselves

    logit_filters = get_logit_filters(model, whisper_options)
    language = whisper_options["language"]
    tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language)

    max_sample_len = sample_len or model.dims.n_text_ctx // 2 
    n_ctx = model.dims.n_text_ctx

    debug = logger.getEffectiveLevel() >= logging.DEBUG

    word_alignement_most_top_layers = float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers

    # The main outcome
    timestamped_word_segments = []  # list of timestamped word segments that have been collected so far
    # Main variables to be accumulated
    segment_tokens = [[]]              # list of lists of token indices that have been collected so far (one list per segment)
    segment_attweights = [[] for _ in range(min(word_alignement_most_top_layers, len(model.decoder.blocks)))]
                                    # attention weights on the last segments
    segment_avglogprobs = []        # average log probability for each segment (actually of the corresponding chunk, as computed by whisper)
    segment_logprobs = []           # token log probabilities for each segment
    # Variables related to options that can skip some segments
    sot_index = None                # index of the SOT token in the current set of processed tokens
    no_speech_prob = None           # no speech probability for the current 30 sec chunk
    chunk_logprobs = []             # log probabilities for the current 30 sec chunk
    chunk_tokens = []               # tokens for the current 30 sec chunk (list of Torch tensors)
    chunk_tokens_nosot = []         # tokens for the current 30 sec chunk, without the SOT tokens (list of indices)
    last_chunk_token = None         # last token of the current chunk, that may be needed for corner cases
    last_token_fallback = None      # last token to use as a fallback if the model gets stuck
    has_started = False             # whether we have started decoding
    mfcc = None                     # MFCC features for the current 30 sec chunk
    new_mfcc = None                 #
    num_inference_steps = 0         # number of inference steps performed so far (for debugging only)
    language_probs = None           # language detection probabilities

    def is_sot(curr_tokens):
        return curr_tokens is None or len(curr_tokens) > 1 or curr_tokens[0] == tokenizer.sot
    
    def has_reached_decoding_limit():
        n = len(chunk_tokens_nosot) + 1
        m = n + (len(chunk_tokens[0]) if len(chunk_tokens) > 0 else 0)
        return n + 1 >= max_sample_len or m > n_ctx

    def reset(add_segment, keep_last_token=True):
        """ Reset the list of tokens for the current speech segment, and corresponding cross-attention weights """
        nonlocal segment_tokens, segment_attweights
        if add_segment:
            if keep_last_token:
                segment_tokens.append([segment_tokens[-1][-1]])
                segment_attweights = [w[-1:] for w in segment_attweights]
            else:
                segment_tokens.append([])
                segment_attweights = [[] for w in segment_attweights]
            segment_tokens[-2].pop(0)
        elif len(segment_tokens[-1]) > 0:
            if debug:
                logger.debug(f"Reset last segment: {tokenizer.decode_with_timestamps(segment_tokens[-1])}")
            segment_tokens[-1] = []
            segment_attweights = [[] for w in segment_attweights]

    saw_consecutive_timestamps = False
    def must_flush_segment(curr_tokens):
        """ Return whether or not the previously collected tokens must be used to add a new speech segment """
        nonlocal segment_tokens, saw_consecutive_timestamps, chunk_tokens_nosot

        if not is_sot(curr_tokens):
            is_timestamp = curr_tokens[0] >= tokenizer.timestamp_begin
            is_previous_timestamp = segment_tokens[-1][-1] >= tokenizer.timestamp_begin if len(segment_tokens[-1]) > 0 else False
            consecutive_timestamps = is_timestamp and is_previous_timestamp
            if consecutive_timestamps:
                saw_consecutive_timestamps = True
            return consecutive_timestamps
        else: # Several tokens as a prompt or must flush last segments

            must_flush = len(segment_tokens[-1]) > 1 and not saw_consecutive_timestamps
            if not must_flush and WHIPSER_GE_20230306: # If the last token is a timestamp, the last segment is used
                if last_chunk_token is None:
                    must_flush = (len(segment_tokens[-1]) > 2 and segment_tokens[-1][-1] >= tokenizer.timestamp_begin)
                else:
                    must_flush = (last_chunk_token >= tokenizer.timestamp_begin)
            if not must_flush and trust_whisper_timestamps:
                # Discard the end of the last transcription
                reset(False)
            saw_consecutive_timestamps = False
            return must_flush

    index_begin_30sec_chunck = 0
    def get_index_begin_30sec_chunck(curr_tokens):
        nonlocal index_begin_30sec_chunck, has_started

        if is_sot(curr_tokens) and has_started:
            if trust_whisper_timestamps:
                res = index_begin_30sec_chunck
                index_begin_30sec_chunck = len(segment_tokens)-1
            else:
                res = len(segment_tokens)-1
            return res

    def align_last_segment(curr_tokens=None):
        nonlocal segment_tokens, segment_attweights, timestamped_word_segments, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps

        if debug and trust_whisper_timestamps:
            logger.debug(f"Add segment {len(timestamped_word_segments)+1} at step {num_inference_steps}:\n\t{tokenizer.decode_with_timestamps(segment_tokens[-1])}")

        tokens = segment_tokens[-1][1:]

        # When the decoding hit the max limit (number of tokens) -- usually when the language model gets stuck --
        # then we have to recover the last token from what is send to the decoder
        unfinished_decoding = has_reached_decoding_limit()
        last_is_not_timestamp = len(tokens) and tokens[-1] < tokenizer.timestamp_begin
        last_token_reliable = True

        if unfinished_decoding:
            logger.debug(f"WARNING: decoding hit the max limit for segment {segment_tokens[-1]} (It usually happens when the language model gets stuck)")
            # The last token chosen is in the prompt for the new chunk
            if curr_tokens is not None and curr_tokens[0] == tokenizer.sot_prev:
                index_sot =  (curr_tokens == tokenizer.sot).nonzero(as_tuple=True)
                assert len(index_sot) == 1
                index_sot = index_sot[0].item()
                assert index_sot > 0 
                last_token_fallback = curr_tokens[index_sot-1].item()
                logger.debug(f"         Guessed last token from the prompt for the new chunk: {last_token_fallback}")
            # Fallback for the last segment, or without prompt: Assume greedy decoding
            else:
                last_token_fallback = torch.argmax(chunk_logprobs[-1]).item() if last_chunk_token is None else last_chunk_token
                last_token_reliable = (temperature == 0)
                logger.debug(f"         Guess last token using probas (assuming greedy decoding): {last_token_fallback}")
            if debug:
                logger.debug(f"WARNING: also add last token: {tokenizer.decode_with_timestamps([last_token_fallback])}")

            tokens.append(last_token_fallback)
            segment_tokens[-1].append(last_token_fallback)
            attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights]
            last_logprobs = chunk_logprobs[-1]
        elif last_is_not_timestamp: # <eot> was emitted early, without a timestamp before
            logger.debug(f"WARNING: end timestamp not produced. Adding <|endoftext|>")
            tokens.append(tokenizer.eot)
            segment_tokens[-1].append(tokenizer.eot)
            attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights]
            last_logprobs = chunk_logprobs[-1]
        else:
            attention_weights = [torch.cat(w[:-1], dim=-2) for w in segment_attweights]
            last_logprobs = chunk_logprobs[-2]

        # Check prediction of last token
        end_token = tokens[-1]
        if end_token >= tokenizer.timestamp_begin:
            start_token = tokens[0]
            assert start_token >= tokenizer.timestamp_begin
            # If Whisper prediction of the end is obviously wrong, we predict it again (constrained)
            if end_token <= start_token:
                new_end_token = last_logprobs[start_token+1:].argmax() + start_token + 1
                tokens[-1] = new_end_token.item()
                if debug:
                    logger.debug(f"Re-estimated end token {tokenizer.decode_with_timestamps([new_end_token])} (was {tokenizer.decode_with_timestamps([end_token])}) to be after start token {tokenizer.decode_with_timestamps([start_token])}")

        if len(tokens) <= 1:
            # Corner case: nothing in between timestamps
            ws = []
        else:
            ws = perform_word_alignment(
                tokens,
                attention_weights,
                tokenizer,
                use_space=should_use_space(language),
                alignment_heads=alignment_heads,
                remove_punctuation_from_words=remove_punctuation_from_words,
                refine_whisper_precision_nframes=refine_whisper_precision_nframes,
                detect_disfluencies=detect_disfluencies,
                unfinished_decoding=unfinished_decoding,
                mfcc=mfcc,
                plot=plot_word_alignment,
                debug=debug,
            )

        add_segment = len(ws) > 0
        if add_segment:
            timestamped_word_segments.append(ws)
        else:
            logger.debug(f"Not added!")
        reset(add_segment, not is_sot(curr_tokens))

        return add_segment, unfinished_decoding, last_token_reliable

    def may_flush_segment(curr_tokens = None):
        """ Add a speech segment with the new tokens if necessary.
            May also remove the last collected segments if filtered out by Whisper (no_speech_prob <= no_speech_threshold)
        """
        nonlocal segment_tokens, segment_attweights, timestamped_word_segments, segment_logprobs, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps, last_chunk_token

        # Check if a new segment should be added
        unfinished_decoding = False
        last_token_reliable = True
        
        if must_flush_segment(curr_tokens) and trust_whisper_timestamps:
            _, unfinished_decoding, last_token_reliable = align_last_segment(curr_tokens)

        i_start = get_index_begin_30sec_chunck(curr_tokens)

        # All segments from previous 30sec chunck have been collected
        if i_start is not None:

            if not trust_whisper_timestamps:

                tokens = torch.Tensor(segment_tokens[-1]).int()
                idx_task = torch.where(tokens==tokenizer.sot_sequence[-1])[0][0].item() # index of <|transcribe|>

                is_special = tokens.ge(tokenizer.eot)
                # Remove prompt
                is_special[:idx_task] = True
                # Keep begin timestamp
                is_special[idx_task:idx_task+2] = False

                is_timestamp = tokens.ge(tokenizer.timestamp_begin)
                consecutive = torch.where(is_timestamp[1:] & is_timestamp[:-1])[0]
                if (WHIPSER_GE_20230306 or has_reached_decoding_limit()) and (
                    (is_timestamp[-1] and not is_timestamp[-2]) if last_chunk_token is None else
                    last_chunk_token >= tokenizer.timestamp_begin and not is_timestamp[-2]
                ):
                    consecutive = torch.cat([consecutive, torch.Tensor([len(tokens)-1]).int()])
                last_is_timestamp = True
                if len(consecutive):
                    # Remove last tokens
                    is_special[consecutive[-1]+1:] = True 
                    # Keep end timestamp
                    is_special[consecutive[-1]] = False
                elif is_timestamp[-1]:
                    # Keep end timestamp
                    is_special[-1] = False
                else:
                    last_is_timestamp = False

                if use_timestamps_for_alignment and len(consecutive):
                    # Keep all timestamps
                    is_special[idx_task+2:consecutive[-1]] = False

                # Do remove what has to be removed
                is_next_achar = ~torch.cat([is_special[1:], torch.Tensor([False]).bool()])
                for i, weights in enumerate(segment_attweights):
                    assert len(weights) == len(tokens), f"{len(weights)} attention weights != {len(tokens)}"
                    # We must remove attention weights used to predict timestamp tokens
                    segment_attweights[i] = [w for s, w in zip(is_next_achar, weights) if s]
                tokens_filtered = tokens[~is_special]                        
                assert len(segment_attweights[0]) == len(tokens_filtered), f"{len(segment_attweights[0])} attention weights != {len(tokens_filtered)} "

                # Replace first and last timestamp
                orig_start, orig_end = tokens_filtered[1].item(), tokens_filtered[-1].item()
                tokens_filtered[1] = tokenizer.timestamp_begin # <|0.00|>
                if last_is_timestamp:
                    tokens_filtered[-1] = tokenizer.timestamp_begin + N_FRAMES // 2 # <|30.00|>
                segment_tokens[-1] = tokens_filtered.tolist()

                # Do alignement
                added, unfinished_decoding, last_token_reliable = align_last_segment()

                # Re-split into segments (if necessary)
                if added:
                    if len(consecutive) > 1:
                        segments_timestamped_concat = timestamped_word_segments[-1]
                        new_segments_timestamped = []
                        new_segment_tokens = []
                        start = idx_task+1
                        i_word = 0
                        for i, end in enumerate(consecutive):
                            end = end.item()
                            new_segment_tokens.append(tokens[start:end+1].tolist())
                            if debug:
                                logger.debug(f"Add segment {len(timestamped_word_segments)+i}:\n\t{tokenizer.decode_with_timestamps(new_segment_tokens[-1])}")
                            total_length = end - start - 1
                            start = end+1
                            length = 0
                            new_segments_timestamped.append([])
                            while length < total_length:
                                if not use_timestamps_for_alignment and i_word == len(segments_timestamped_concat):
                                    # This can happen in the case of "..."
                                    assert total_length == 1 and i == len(consecutive)-1, "Unexpected situation!"
                                    break
                                assert i_word < len(segments_timestamped_concat), f"i_word={i_word} < len(segments_timestamped_concat)={len(segments_timestamped_concat)}"
                                word = segments_timestamped_concat[i_word]
                                new_segments_timestamped[-1].append(word)
                                length += len(word["tokens_indices"])
                                i_word += 1
                            # This can be non zero, when a punctuation (alone in a segment) is glued to the previous segment
                            if use_timestamps_for_alignment:
                                assert length == total_length, f"length={length} != total_length={total_length}"
                            elif length > total_length:
                                delta = length - total_length
                                word = new_segments_timestamped[-1][-1]
                                word_tokindices = word["tokens_indices"]
                                word_tokens = word["tokens"]
                                word["tokens_indices"] = word_tokindices[:-delta]
                                word["tokens"] = word_tokens[:-delta]
                                word["word"] = "".join(word_tokens[:-delta])
                                i_word -= 1
                                t = segments_timestamped_concat[i_word]["end"]
                                segments_timestamped_concat[i_word] = dict(
                                    text="".join(word_tokens[-delta:]),
                                    start=t, end=t, # Word without timestamp
                                    tokens=word_tokens[-delta:],
                                    tokens_indices=word_tokindices[-delta:],
                                )

                        assert i_word == len(segments_timestamped_concat)

                        segment_tokens = segment_tokens[:-2] + new_segment_tokens + [segment_tokens[-1]]
                        timestamped_word_segments = timestamped_word_segments[:-1] + new_segments_timestamped

                    else:

                        # Recover start and end token
                        segment = segment_tokens[-2]
                        tokenizer.decode_with_timestamps([orig_start,orig_end])
                        segment[0] = orig_start
                        if last_is_timestamp:
                            segment[-1] = orig_end

                        if debug:
                            logger.debug(f"Add segment {len(timestamped_word_segments)}:\n\t{tokenizer.decode_with_timestamps(segment)}")
                        
                    if unfinished_decoding:
                        timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable

                reset(False)

            mfcc = new_mfcc

            n_segments = len(segment_tokens)-1

            # Get word confidence and/or check if previous segments shoud have been skipped
            should_skip = False
            if compute_word_confidence or no_speech_threshold is not None:

                # no voice activity check
                should_skip = (no_speech_prob > no_speech_threshold) if (no_speech_threshold is not None) else False
                if compute_word_confidence or (should_skip and logprob_threshold is not None):
                    n = len(chunk_logprobs)
                    if n == len(chunk_tokens_nosot):
                        chunk_tokens_nosot = chunk_tokens_nosot[1:]
                    if unfinished_decoding:
                        assert last_token_fallback is not None
                        last_tokens = [last_token_fallback]
                        timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable
                        n += 1
                    elif has_reached_decoding_limit():
                        # there were segments in the 30sec chunck, and then the LM got stuck
                        last_tokens = [torch.argmax(chunk_logprobs[-1]).item()]
                        timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = (temperature == 0)
                    else:
                        last_tokens = [tokenizer.eot]
                    chunck_indices = chunk_tokens_nosot + last_tokens
                    assert len(chunk_logprobs) == len(chunck_indices), f"{len(chunk_logprobs)} != {len(chunck_indices)}"
                    logprobs = torch.cat([logprob[i].unsqueeze(0) for (logprob, i) in zip(chunk_logprobs, chunck_indices)])
                    assert min([p.isfinite().item() for p in logprobs]), \
                        f"Got infinite logprob among ({len(logprobs)}) {[(i, tokenizer.decode_with_timestamps([i]), v.item()) for (i,v) in zip(chunck_indices, logprobs)]}"
                    sum_logprob = sum(logprobs)
                    avg_logprob = sum_logprob/n
                    # don't skip if the logprob is high enough, whatever the no_speech_prob is
                    if logprob_threshold is not None and avg_logprob > logprob_threshold:
                        should_skip = False

                if should_skip:
                    logger.debug(f"Skipping last {n_segments-i_start} segments (no_speech_prob {no_speech_prob} > {no_speech_threshold} and avg_logprob {avg_logprob} < {logprob_threshold})")
                    index_begin_30sec_chunck -= n_segments-i_start
                    segment_tokens = segment_tokens[:i_start] + [segment_tokens[-1]]
                    timestamped_word_segments = timestamped_word_segments[:i_start]
                elif compute_word_confidence:
                    avg_logprob = avg_logprob.item()
                    i_token_end = -1
                    for i in range(i_start, n_segments):
                        tokens = segment_tokens[i]
                        i_token_start = i_token_end + 1
                        i_token_end = i_token_start + len(tokens)
                        assert chunck_indices[i_token_start:i_token_end] == tokens, f"Inconsistent token list {tokenizer.decode_with_timestamps(chunck_indices[i_token_start:i_token_end])} != {tokenizer.decode_with_timestamps(tokens)}"
                        i_token_start += 1 # skip sos (start time)
                        if not unfinished_decoding or i != n_segments-1:
                            i_token_end -= 1 # skip eos (end time)
                        segment_logprobs.append(logprobs[i_token_start:i_token_end])
                        segment_avglogprobs.append(avg_logprob)
                else:
                    for i in range(i_start, n_segments):
                        segment_logprobs.append(None)
                        segment_avglogprobs.append(None)
               
            else:
                for i in range(i_start, n_segments):
                    segment_logprobs.append(None)
                    segment_avglogprobs.append(None)

            if verbose_bugged and not should_skip:
                for segment in timestamped_word_segments[i_start:]:
                    for word in segment:
                        print_timestamped(word)

            # Reset counters
            chunk_tokens = []
            chunk_tokens_nosot = []
            chunk_logprobs = []
            no_speech_prob = None

    def hook_attention_weights(layer, ins, outs, index):
        nonlocal segment_attweights
        # In old version of whisper, output is a single tensor
        assert isinstance(outs, tuple) and len(outs) == 2, "whisper seems to be outdated, please update it (pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git)"
        if not has_started:
            return
        w = outs[-1]
        # Only the last attention weights is useful
        if w.shape[-2] > 1:
            w = w[:, :, -1:, :]
        segment_attweights[index].append(w.cpu())

    def hook_mfcc(layer, ins, outs):
        nonlocal new_mfcc, mfcc
        new_mfcc = ins[0]
        if mfcc is None:
            mfcc = new_mfcc

    def hook_input_tokens(layer, ins, outs):
        nonlocal segment_tokens, sot_index, chunk_tokens, chunk_tokens_nosot, logit_filters, has_started, language, num_inference_steps
        num_inference_steps += 1

        curr_tokens = ins[0]
        assert curr_tokens.shape[0] == 1, "Batch decoding is not supported"
        curr_tokens = curr_tokens.squeeze(0)

        if is_sot(curr_tokens):
            chunk_prompt = curr_tokens.tolist()
            if language is None:
                if len(curr_tokens) > 1:
                    language = tokenizer.decode(curr_tokens[-2:-1])
                    language = language[2:-2] # remove trailing "<|" and "|>"
                    whisper_options["language"] = language

                    if verbose and not whisper_options["verbose"] and len(curr_tokens) > 1:
                        # Reproduce whisper verbose (2/2)
                        print(f"Detected language: {whisper.tokenizer.LANGUAGES[language].title()}")
                        sys.stdout.flush()

            logit_filters = get_logit_filters(model, whisper_options, prompt = chunk_prompt[1:-len(tokenizer.sot_sequence)])
        
        may_flush_segment(curr_tokens)

        # Get the index of the <|startoftranscript|> tokens (to get proba of silence later)
        if is_sot(curr_tokens):
            has_started = len(curr_tokens) > 1 or not model.is_multilingual
            if no_speech_threshold is not None:
                sot_index = curr_tokens.tolist().index(tokenizer.sot)
        else:
            sot_index = None

        # Keep the last token only
        if has_started:
            segment_tokens[-1].append(curr_tokens[-1].item())

        # Accumulate tokens
        if has_started:
            chunk_tokens.append(curr_tokens)
            if not is_sot(curr_tokens):
                chunk_tokens_nosot.append(curr_tokens[-1].item())
        else:
            if verbose and not whisper_options["verbose"]:
                # Reproduce whisper verbose (1/2)
                print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")

    embedding_weights = None 
    def hook_output_logits(layer, ins, outs):
        nonlocal no_speech_prob, chunk_logprobs, segment_tokens, chunk_tokens, chunk_tokens_nosot, last_chunk_token, embedding_weights, has_started, language, language_probs
        
        if embedding_weights is None:
            embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype)

        # Get the probability of silence
        if sot_index is not None and no_speech_prob is None:
            logits = (outs[0][sot_index,:] @ embedding_weights).float()
            logits = logits.softmax(dim=-1)
            no_speech_prob = logits[tokenizer.no_speech].item()

        # Get language probabilities
        if language is None and sot_index is not None and model.is_multilingual:
            index_start = tokenizer.sot + 1
            index_end = index_start + len(tokenizer.all_language_tokens)
            logits = (outs[0][sot_index,:] @ embedding_weights).float()
            language_probs = logits[index_start:index_end].softmax(dim=-1)
            language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist()))

        # Get the log-probabilities of tokens (we don't know yet which one will be chosen)
        if has_started:
            logits = (outs[0][-1:,:] @ embedding_weights).float()
            tokens = torch.cat(chunk_tokens).unsqueeze(0)
            for logit_filter in logit_filters:
                logit_filter.apply(logits, tokens)
            logits = F.log_softmax(logits.squeeze(0), dim=-1)
            chunk_logprobs.append(logits)

            if WHIPSER_GE_20230306 and has_reached_decoding_limit():
                last_chunk_token = torch.argmax(logits).item()
            else:
                last_chunk_token = None

    try:

        # Add hooks to the model, to get tokens and attention weights on the fly
        all_hooks = []
        all_hooks.append(model.encoder.conv1.register_forward_hook(hook_mfcc))
        all_hooks.append(model.decoder.token_embedding.register_forward_hook(hook_input_tokens))
        nblocks = len(model.decoder.blocks)
        j = 0
        for i, block in enumerate(model.decoder.blocks):
            if i < nblocks - word_alignement_most_top_layers:
                continue
            all_hooks.append(
                block.cross_attn.register_forward_hook(
                    lambda layer, ins, outs, index=j: hook_attention_weights(layer, ins, outs, index))
            )
            j += 1
        if compute_word_confidence or no_speech_threshold is not None:
            all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits))

        transcription = model.transcribe(audio, **whisper_options)

    finally:

        # Remove hooks
        for hook in all_hooks:
            hook.remove()

    # Finalize (collect last segment)
    may_flush_segment()
    segment_tokens.pop(-1)

    token_special_idx = min(tokenizer.sot, tokenizer.eot)
    def filter_tokens(tokens):
        while len(tokens) and tokens[0] >= token_special_idx:
            tokens = tokens[1:]
        while len(tokens) and tokens[-1] >= token_special_idx:
            tokens = tokens[:-1]
        return tokens

    assert len(segment_tokens) == len(timestamped_word_segments), f"Inconsistent number of segments: tokens ({len(segment_tokens)}) != timestamped_word_segments ({len(timestamped_word_segments)})"
    assert len(segment_avglogprobs) == len(segment_tokens), f"Inconsistent number of segments: avg logprobs ({len(segment_avglogprobs)}) != tokens ({len(segment_tokens)})"
    assert len(segment_logprobs) == len(segment_tokens), f"Inconsistent number of segments: logprobs ({len(segment_logprobs)}) != tokens ({len(segment_tokens)})"

    whisper_segments = transcription["segments"]
    l1 = len(whisper_segments)
    l2 = len(timestamped_word_segments)
    if l1 != l2 and l1 != 0:
        logger.warning(f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})")
    assert l1 == l2 or l1 == 0, f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})"

    logger.debug("Compile results")
    words = []
    for i, (segment, timestamped_words, token, avglogprob, logprobs) in enumerate(zip(whisper_segments, timestamped_word_segments, segment_tokens, segment_avglogprobs, segment_logprobs)):
        timestamped_tokens = filter_tokens(token)
        whisper_tokens = filter_tokens(segment["tokens"])
        if timestamped_tokens != whisper_tokens:
            if len(timestamped_tokens) == len(whisper_tokens) + 1:
                logger.warning(f"An additional token was added on segment {i}")
            elif WHIPSER_GE_20230306 and len(whisper_tokens) == 0:
                logger.warning(f"Whisper has empty segment {i}")
                assert segment["end"] == segment["start"], f"Fatal Error: Got empty segment {i} with non-zero duration"
                segment["tokens"] = timestamped_tokens
                segment["text"] = tokenizer.decode(timestamped_tokens)
            else:
                assert len(timestamped_tokens) < len(whisper_tokens) and timestamped_tokens == whisper_tokens[:len(timestamped_tokens)], \
                    f"Fatal Error: Got inconsistent text for segment {i}:\n({len(timestamped_tokens)})\n{tokenizer.decode_with_timestamps(timestamped_tokens)}\n{timestamped_tokens}\n!=\n({len(whisper_tokens)})\n{tokenizer.decode_with_timestamps(whisper_tokens)}\n{whisper_tokens[:len(timestamped_tokens)]}"
                segment["tokens"] = token if WHIPSER_GE_20230306 else timestamped_tokens # tokens include special timestamp tokens since 20230306
                segment["text"] = tokenizer.decode(segment["tokens"])
                logger.warning(f"Text had to be shortned on segment {i}:\n{tokenizer.decode(timestamped_tokens)}\n!=\n{tokenizer.decode(whisper_tokens)}")
            timestamped_words[-1]["avg_logprob_reliable"] = False

        offset = segment["seek"] * HOP_LENGTH / SAMPLE_RATE
        for timestamped_word in timestamped_words:
            timestamped_word["start"] += offset
            timestamped_word["end"] += offset
            timestamped_word["idx_segment"] = i

        if compute_word_confidence:
            if "avg_logprob_reliable" not in timestamped_words[-1] or timestamped_words[-1]["avg_logprob_reliable"]:
                # assert abs(segment["avg_logprob"] - avglogprob) < 1e-2, f"Fatal Error: Got inconsistent logprob for segment {i}: {segment['avg_logprob']} != {avglogprob}"
                if abs(segment["avg_logprob"] - avglogprob) >= 1e-2:
                    logger.warning(f"Recomputed different logprob for segment {i}: {avglogprob} != {segment['avg_logprob']}")
            if include_punctuation_in_confidence:
                segment["confidence"] = round_confidence(logprobs.mean().exp().item())
            else:
                logprobs_nopunc = []
            i_end = 0
            for timestamped_word in timestamped_words:
                i_start = i_end
                tokens = timestamped_word["tokens"]
                i_end += len(tokens)

                assert i_end <= len(logprobs), f"Fatal Error: Got out-of-bound index for segment {i}: {i_end} > {len(logprobs)}"
                if include_punctuation_in_confidence:
                    word_logprobs = logprobs[i_start:i_end]
                else:
                    while len(tokens) > 1 and len(tokens[-1]) and tokens[-1][-1] in _punctuation: # Note: look at the last character of token, to take into account "...", "!!", etc.
                        tokens = tokens[:-1]
                    word_logprobs = logprobs[i_start:i_start + len(tokens)]
                    logprobs_nopunc.append(word_logprobs)

                timestamped_word["confidence"] = round_confidence(word_logprobs.mean().exp().item() if len(word_logprobs) else 0.0)

            if i_end not in [len(logprobs), len(logprobs)-1]:
                logger.warning(f"Got inconsistent length for segment {i} ({len(logprobs)} != {i_end}). Some words have been ignored.")
            if not include_punctuation_in_confidence:   
                logprobs_nopunc = torch.cat(logprobs_nopunc)
                segment["confidence"] = round_confidence(logprobs_nopunc.mean().exp().item())

        words.extend(timestamped_words)

    if language_probs:
        transcription["language_probs"] = language_probs

    return transcription, words

def _transcribe_timestamped_naive(
    model,
    audio,
    remove_punctuation_from_words,
    compute_word_confidence,
    include_punctuation_in_confidence,
    refine_whisper_precision_nframes,
    alignment_heads,
    plot_word_alignment,
    word_alignement_most_top_layers,
    detect_disfluencies,
    trust_whisper_timestamps,
    min_word_duration,
    **whisper_options,
):
    verbose = whisper_options["verbose"]
    whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"]  # We will print intermediate results ourselves
    language = whisper_options["language"]
    refine_whisper_precision_sec = refine_whisper_precision_nframes * AUDIO_TIME_PER_TOKEN

    word_alignement_most_top_layers = float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers

    audio = get_audio_tensor(audio)
    audio_duration = audio.shape[-1] / SAMPLE_RATE

    if verbose and language is None and not whisper_options["verbose"]:
        # Reproduce whisper verbose (1/2)
        print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")

    tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language)

    language_probs = None
    def hook_output_logits(layer, ins, outs):
        nonlocal language_probs, tokenizer
        
        # Get language probabilities
        if language_probs is None:
            if outs.shape[1] == 1:
                embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype)
                index_start = tokenizer.sot + 1
                index_end = index_start + len(tokenizer.all_language_tokens)
                logits = (outs[0][0,:] @ embedding_weights).float()
                language_probs = logits[index_start:index_end].softmax(dim=-1)
                language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist()))
            else:
                language_probs = False

    all_hooks = []
    if model.is_multilingual:
        all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits))

    try:
        transcription = model.transcribe(audio, **whisper_options)
    finally:
        for hook in all_hooks:
            hook.remove()

    if verbose and language is None and not whisper_options["verbose"]:
        # Reproduce whisper verbose (2/2)
        print(f"Detected language: {whisper.tokenizer.LANGUAGES[transcription['language']].title()}")
        sys.stdout.flush()

    language = norm_language(transcription["language"])
    use_space = should_use_space(language)

    n_mels = model.dims.n_mels if hasattr(model.dims, "n_mels") else 80

    attention_weights = [[] for _ in range(min(word_alignement_most_top_layers,len(model.decoder.blocks)))]

    try:

        all_hooks = []

        # Hook the model
        nblocks = len(model.decoder.blocks)
        j = 0
        for i, block in enumerate(model.decoder.blocks):
            if i < nblocks - word_alignement_most_top_layers:
                continue
            all_hooks.append(
                block.cross_attn.register_forward_hook(
                    lambda layer, ins, outs, index=j: attention_weights.__setitem__(index, outs[-1])
                )
            )
            j += 1


        # When not relying on Whisper timestamps
        current_tokens = []
        token_to_idx_segment = []

        words = []
        previous_end = 0
        whisper_segments = transcription["segments"]
        for i_segment, segment in enumerate(whisper_segments):

            # Note: this could also be a fix to issue #61 where a "<|te|>" token was predicted
            # segment["tokens"] = [t for t in segment["tokens"] if t < tokenizer.eot or t >= tokenizer.timestamp_begin]

            start = end = tokens = None
            if trust_whisper_timestamps:

                start = segment["start"]
                end = segment["end"]
                if end < start:
                    # Whisper is wrong on the prediction of segment end
                    end = min(audio_duration, start + SEGMENT_DURATION)

                start_margin_min = start - refine_whisper_precision_sec
                start_margin_max = start + refine_whisper_precision_sec
                if start >= audio_duration - min_word_duration or (previous_end >= start_margin_min and previous_end <= start_margin_max):
                    # Make start as accurate as possible (as the decoding will start with timestamp <|0|>)
                    start = previous_end
                else:
                    # Fallback
                    start = start_margin_min

                if start > audio_duration - min_word_duration:
                    # Skip last segment if too short
                    logger.warning(f"Skipping segment outside of audio duration {audio_duration} (original: {segment['start']}-{segment['end']}, new: {start}-XXX)")
                    continue

                end_margin_min = end - refine_whisper_precision_sec
                end_margin_max = end + refine_whisper_precision_sec
                if i_segment < len(whisper_segments) - 1:
                    # Try to enforce:
                    #   end + min_word_duration <= next start + refine_whisper_precision_sec
                    end_margin_max2 = whisper_segments[i_segment + 1]["start"] + refine_whisper_precision_sec - min_word_duration
                    if end_margin_max2 >= end_margin_min:
                        end_margin_max = min(end_margin_max2, end_margin_max)
                end = min(audio_duration, end_margin_max)

                if end < start + min_word_duration:
                    logger.warning(f"Got super short segment (original from whisper: {segment['start']}-{segment['end']}, new: {start, end})")
                    end = min(audio_duration, start + min_word_duration)
                    if end <= start:
                        logger.warning(f"Skipping this short segment occuring too close to the end of the audio")
                        continue

                tokens = segment["tokens"]

            else:

                seek = segment["seek"]
                new_tokens = segment["tokens"]
                if not len(new_tokens):
                    continue
                # Add timestamps that will be needed after
                if new_tokens[0] < tokenizer.timestamp_begin:
                    relative_start = segment["start"] - (seek * HOP_LENGTH / SAMPLE_RATE)
                    start_token = round(relative_start * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin
                    new_tokens = [start_token] + new_tokens
                if new_tokens[-1] < tokenizer.timestamp_begin:
                    relative_end = segment["end"] - (seek * HOP_LENGTH / SAMPLE_RATE)
                    end_token = round(relative_end * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin
                    new_tokens = new_tokens + [end_token]

                current_tokens.extend(new_tokens)
                token_to_idx_segment.extend([i_segment] * len(new_tokens))

                next_seek = whisper_segments[i_segment+1]["seek"] if i_segment < len(whisper_segments) - 1 else None
                if seek != next_seek:
                    start = float(seek * HOP_LENGTH / SAMPLE_RATE)
                    assert start < audio_duration, f"Got start {start} which is outside of audio duration {audio_duration}"
                    end = min(start + SEGMENT_DURATION, audio_duration)
                    tokens = current_tokens

            if tokens is None or not len(tokens):
                continue

            start_sample = min(round(start * SAMPLE_RATE), audio.shape[-1])
            end_sample = min(round(end * SAMPLE_RATE), audio.shape[-1])

            # Extract features on the audio segment
            sub_audio = audio_minimum_padding(audio[start_sample:end_sample])

            mfcc = whisper.log_mel_spectrogram(sub_audio, n_mels).to(model.device)
            mfcc = whisper.pad_or_trim(mfcc, N_FRAMES)
            mfcc = mfcc.unsqueeze(0)

            segment_tokens_check = []
            if tokens[0] >= tokenizer.timestamp_begin:
                segment_tokens_check.append(tokens[0])
            while tokens[0] >= tokenizer.timestamp_begin:
                tokens = tokens[1:]
                assert len(tokens), "Got transcription with only timestamps!"
            last_token_check = None
            while tokens[-1] >= tokenizer.timestamp_begin:
                last_token_check = tokens[-1]
                tokens = tokens[:-1]

            tokens = [
                    *tokenizer.sot_sequence,
                    tokenizer.timestamp_begin,
                ] + tokens

            i_start = len(tokenizer.sot_sequence)

            with torch.no_grad():
                logprobs = model(mfcc, torch.Tensor(tokens).int().to(model.device).unsqueeze(0))
                logprobs = F.log_softmax(logprobs, dim=-1)

            end_token = tokenizer.timestamp_begin + round(min(N_FRAMES * HOP_LENGTH, end_sample - start_sample) // AUDIO_SAMPLES_PER_TOKEN)
            tokens = tokens[i_start:] + [end_token]
            attention_weights = [w[:, :, i_start-1:, :] for w in attention_weights]

            ws = perform_word_alignment(
                tokens,
                attention_weights,
                tokenizer,
                use_space=use_space,
                alignment_heads=alignment_heads,
                remove_punctuation_from_words=remove_punctuation_from_words,
                refine_whisper_precision_nframes=refine_whisper_precision_nframes,
                detect_disfluencies=detect_disfluencies,
                mfcc=mfcc,
                plot=plot_word_alignment,
            )

            segment_logprobs = []
            i_token = 1
            
            for word in ws:

                word["start"] = round(word["start"] + start, 2)
                word["end"] = round(word["end"] + start, 2)
                
                if trust_whisper_timestamps:
                    word.update({"idx_segment": i_segment})
                else:
                    assert i_token < len(tokens)
                    assert not len(word["tokens_indices"]) or word["tokens_indices"][0] == tokens[i_token]
                    word.update({"idx_segment": token_to_idx_segment[i_token]})
                    i_token += len(word["tokens"])
                    while i_token < len(tokens) and tokens[i_token] >= tokenizer.timestamp_begin:
                        i_token += 1
                
                tok_indices = word["tokens_indices"]
                segment_tokens_check.extend(tok_indices)

                if compute_word_confidence:
                    tok = word["tokens"]
                    i_end = i_start + len(tok)
                    if include_punctuation_in_confidence:
                        while len(tok) > 1 and len(tok[-1]) and tok[-1][-1] in _punctuation: # Note: look at the last character of token, to take into account "...", "!!", etc.
                            tok = tok[:-1]
                            tok_indices = tok_indices[:-1]
                    word_logprobs = [logprobs[:, step, tok] for (step, tok) in zip(range(i_start, i_start + len(tok_indices)), tok_indices)]
                    i_start = i_end
                    if len(word_logprobs):
                        word_logprobs = torch.cat(word_logprobs)
                        segment_logprobs.append(word_logprobs)
                        word_confidence = word_logprobs.mean().exp().item()
                    else:
                        word_confidence = 0
                    word.update({"confidence": round_confidence(word_confidence)})

                words.append(word)

                if verbose:
                    print_timestamped(word)

            if last_token_check is not None:
                segment_tokens_check.append(last_token_check)
            if trust_whisper_timestamps:
                if segment_tokens_check != segment["tokens"]:
                    assert len(segment_tokens_check) < len(segment["tokens"]) and segment_tokens_check[:-1] == segment["tokens"][:len(segment_tokens_check)-1], \
                        f"Got inconsistent tokens: {tokenizer.decode(segment_tokens_check)} != {tokenizer.decode(segment['tokens'])}"
                    segment["tokens"] = segment_tokens_check
                    segment["text"] = tokenizer.decode(segment["tokens"])
            # else: TODO

            if len(segment_logprobs):
                segment.update({"confidence": round_confidence(torch.cat(segment_logprobs).mean().exp().item())})

            if len(ws):
                previous_end = ws[-1]["end"]

            if not trust_whisper_timestamps:
                current_tokens = []
                token_to_idx_segment = []

    finally:

        # Remove hooks
        for hook in all_hooks:
            hook.remove()

    if language_probs:
        transcription["language_probs"] = language_probs

    return (transcription, words)

def get_audio_tensor(audio, device="cpu"):
    if isinstance(audio, str):
        audio = whisper.load_audio(audio)
    if isinstance(audio, np.ndarray):
        audio = torch.Tensor(audio)
    else:
        assert isinstance(audio, torch.Tensor), f"Got unexpected audio of type {type(audio)}"
    return audio.to(device)

def audio_minimum_padding(audio):
    if audio.shape[-1] <= 200:
        return whisper.pad_or_trim(audio, 201)
    return audio


def should_use_space(language):
    return norm_language(language) not in ["zh", "ja", "th", "lo", "my", "yue"]

def norm_language(language):
    if language is None:
        return "en"
    return whisper.tokenizer.TO_LANGUAGE_CODE.get(language.lower(), language)

def print_timestamped(w):
    line = f"[{format_timestamp(w['start'])} --> {format_timestamp(w['end'])}] {w['text']}\n"
    # compared to just `print(line)`, this replaces any character not representable using
    # the system default encoding with an '?', avoiding UnicodeEncodeError.
    sys.stdout.write(line.encode(sys.getdefaultencoding(), errors="replace").decode())
    sys.stdout.flush()


def get_logit_filters(model, whisper_options, prompt = None):
    decoding_options = get_decoding_options(whisper_options)
    if "initial_prompt" in decoding_options:
        prompt0 = decoding_options.pop("initial_prompt")
        if prompt is None:
            prompt = prompt0
    if prompt is not None:
        decoding_options["prompt"] = prompt
    decoding_options = whisper.DecodingOptions(
        without_timestamps=False,
        max_initial_timestamp=1.0,
        prefix=None,
        suppress_blank=True,
        **decoding_options
    )

    # This performs some checks on the options
    decoding_task = whisper.decoding.DecodingTask(model, decoding_options)
    return decoding_task.logit_filters

def get_decoding_options(whisper_options):
    return dict([(k,v) for (k,v) in whisper_options.items()
        if k not in [
            "no_speech_threshold",
            "logprob_threshold",
            "compression_ratio_threshold",
            "condition_on_previous_text",
            "verbose",
        ]
    ])

def get_tokenizer(model, task="transcribe", language="en"):
    try:
        return whisper.tokenizer.get_tokenizer(
            model.is_multilingual,
            num_languages=model.num_languages if hasattr(model, "num_languages") else 99,
            task=task, language=language
        )
    except TypeError: # Old openai-whisper version
        return whisper.tokenizer.get_tokenizer(
            model.is_multilingual,
            task=task, language=language
        )

def perform_word_alignment(
    tokens,
    attention_weights,
    tokenizer,
    use_space=True,
    mfcc=None,
    refine_whisper_precision_nframes=0,
    remove_punctuation_from_words=False,
    include_punctuation_in_timing=False, # Was True before 1.9
    unfinished_decoding=False,
    alignment_heads=None,
    medfilt_width=9,
    qk_scale=1.0,
    detect_disfluencies=True,
    subwords_can_be_empty=True, # Was False before 1.11
    plot=False,
    debug=False,
):
    """
    Perform word alignment on the given tokens and attention weights.
    Returns a list of (word, start_time, end_time) tuples.

    tokens: list of tokens (integers)
    attention_weights: list of attention weights (torch tensors)
    tokenizer: tokenizer used to tokenize the text
    use_space: whether to use spaces to split the tokens into words (should be true for all languages except Japanese, Chinese, ...)
    mfcc: MFCC features (used to identify padded region, and for plotting)
    refine_whisper_precision_nframes: precision time
    remove_punctuation_from_words: whether to remove punctuation from words
    include_punctuation_in_timing: whether to include punctuation in the timing of (previous) words
    unfinished_decoding: whether the decoding is unfinished (e.g. because the model is stuck)
    alignment_heads: list of attention heads to use for alignment
    medfilt_width: width of the median filter used to smooth the attention weights
    qk_scale: scale factor applied to the attention weights
    plot: whether to plot the word alignment
    debug: whether to print debug information
    """

    assert len(tokens) > 1, f"Got unexpected sequence of tokens of length {len(tokens)} {tokenizer.decode_with_timestamps(tokens)}"
    start_token = tokens[0] - tokenizer.timestamp_begin
    end_token = tokens[-1] - tokenizer.timestamp_begin

    # Check start / end tokens
    if start_token < 0:
        raise RuntimeError(f"Missing start token in: {tokenizer.decode_with_timestamps(tokens)}")
    if len(tokens) == 1 or end_token < 0:
        # This can happens when Whisper is stucked as a Language Model
        if debug:
            logger.debug(f"Missing end token in {tokenizer.decode_with_timestamps(tokens)}")
        end_token = N_FRAMES // 2
    if end_token == start_token and refine_whisper_precision_nframes == 0:
        if debug:
            logger.debug(f"Got empty segment in {tokenizer.decode_with_timestamps(tokens)}")
        return []

    # Let a minimal duration given the number of tokens (see https://github.com/linto-ai/whisper-timestamped/issues/67)
    end_token = min(N_FRAMES // 2, max(end_token, start_token + len(tokens)))

    # Put some margin around the segment
    if refine_whisper_precision_nframes > 0:
        start_token = max(start_token - refine_whisper_precision_nframes, 0)
        end_token = min(end_token + refine_whisper_precision_nframes, N_FRAMES // 2)

    if end_token <= start_token:
        raise RuntimeError(f"Got segment with null or negative duration {tokenizer.decode_with_timestamps(tokens)}: {start_token} {end_token}")

    start_time = start_token * AUDIO_TIME_PER_TOKEN
    # end_time = end_token * AUDIO_TIME_PER_TOKEN

    split_tokens = split_tokens_on_spaces if use_space else split_tokens_on_unicode
    words, word_tokens, word_tokens_indices = split_tokens(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words)

    # If the last token is a punctuation that comes after a word
    # group this final punctuation with the final timestamp
    # This is to avoid assigning the final punctuation to a big silence or a noise/music background coming after
    num_punctuations_per_tokens = [
        0 if len(w) == 1 or w[-1] not in _punctuation else 1
        for w in word_tokens
    ]
    if include_punctuation_in_timing:
        num_punctuations_per_tokens[:-2]=[0]*(len(num_punctuations_per_tokens)-2)

    for i, w in enumerate(attention_weights):
        assert w.shape[-2] == len(tokens), f"Attention weights have wrong shape: {w.shape[-2]} (expected {len(tokens)})."
    weights = torch.cat(attention_weights) # layers * heads * tokens * frames

    num_tokens = weights.shape[-2]
    num_frames = end_token - start_token
    if num_tokens > num_frames:
        logger.warning(f"Too much text ({num_tokens} tokens) for the given number of frames ({num_frames}) in: {tokenizer.decode_with_timestamps(tokens)}\nThe end of the text will be removed.")
        return perform_word_alignment(
            tokens[:num_frames-1] + [tokens[-1]],
            [torch.cat([w[:, :, :num_frames-1, :], w[:, :, -1:, :]], dim=-2)
                for w in attention_weights],
            tokenizer,
            use_space=use_space,
            refine_whisper_precision_nframes=refine_whisper_precision_nframes,
            medfilt_width=medfilt_width,
            qk_scale=qk_scale,
            alignment_heads=alignment_heads,
            mfcc=mfcc,
            plot=plot,
            remove_punctuation_from_words=remove_punctuation_from_words,
            detect_disfluencies=detect_disfluencies,
            subwords_can_be_empty=subwords_can_be_empty,
            unfinished_decoding=True,
            debug=debug,
        )

    assert end_token <= weights.shape[-1]
    assert len(tokens) == num_tokens

    weights = weights[..., start_token: end_token].cpu()                        # layers * heads * tokens * frames

    if alignment_heads is None:
        weights = weights.reshape(-1, *weights.shape[-2:])                      # N * tokens * frames
    else:
        weights = torch.stack([weights[l][h] for l, h in alignment_heads.indices().T])
    weights = median_filter(weights, (1, 1, medfilt_width))
    weights = torch.tensor(weights * qk_scale).softmax(dim=-1)
    weights = weights.mean(axis=(0))  # average over layers and heads           # tokens * frames
    weights = weights / weights.norm(dim=-2, keepdim=True)  # This was before the mean before 1.9
    weights = -weights.double().numpy()
    worse_weight = 0

    # Get the limit of audio duration
    max_duration = None
    if mfcc is not None:
        max_duration = find_start_padding(mfcc)
        if max_duration is not None:
            max_duration = max_duration // 2

    # Enforce the max duration
    if max_duration:
        if start_token >= max_duration:
            logger.warning(f"Got start time outside of audio boundary")
        else:
            weights[:-1, max_duration:] = worse_weight

    # Encourage to start early
    weights[0, 0] = weights.min()
    # weights[0, refine_whisper_precision_nframes*2:] = worse_weight

    if subwords_can_be_empty:
        step_pattern = dtw.stepPattern.symmetric1
    else:
        # Similar as "symmetric1" but without the possibility to have the same timestamp for two tokens
        step_pattern = dtw.stepPattern.StepPattern(dtw.stepPattern._c(
            1, 1, 1, -1,
            1, 0, 0, 1,
            2, 0, 1, -1,
            2, 0, 0, 1,
        ))
    alignment = dtw.dtw(weights, step_pattern=step_pattern)

    global num_alignment_for_plot
    num_alignment_for_plot += 1

    if plot:
        import matplotlib.pyplot as plt
        import matplotlib.ticker as ticker

        plot_mfcc = 1 if mfcc is not None else 0
        plot_disfluencies = 1 if detect_disfluencies else 0
        nplots = (1 + plot_mfcc + plot_disfluencies)

        plt.subplots(nplots, 1, figsize=(16, 9), gridspec_kw={'height_ratios': [3] + [1] * (nplots - 1)})
        plt.subplot(nplots, 1, 1, frameon=False)

        plt.imshow(-weights, aspect="auto")
        plt.plot(alignment.index2s, alignment.index1s, color="red")

        xticks = np.arange(0, weights.shape[1], 1 / AUDIO_TIME_PER_TOKEN)
        xticklabels = [round_timestamp(x) for x in xticks * AUDIO_TIME_PER_TOKEN + start_time]

        ylims = plt.gca().get_ylim()

        ax = plt.gca()
        ax.tick_params('both', length=0, width=0, which='minor', pad=6)

        ax.yaxis.set_ticks_position("left")
        ax.yaxis.set_label_position("left")
        ax.invert_yaxis()
        ax.set_ylim(ylims)

        major_ticks = [-0.5]
        minor_ticks = []
        current_y = 0

        for word, word_token in zip(words, word_tokens):
            minor_ticks.append(current_y + len(word_token) / 2 - 0.5)
            current_y += len(word_token)
            major_ticks.append(current_y - 0.5)

        words_with_subwords = ["|".join(s).strip() for (w, s) in zip(words, word_tokens)]

        ax.yaxis.set_minor_locator(ticker.FixedLocator(minor_ticks))
        ax.yaxis.set_minor_formatter(
            ticker.FixedFormatter(words_with_subwords))
        ax.set_yticks(major_ticks)
        ax.yaxis.set_major_formatter(ticker.NullFormatter())
        for y in major_ticks:
            plt.axhline(y, color="black", linestyle="dashed")

        plt.ylabel("Words")

        if plot_mfcc:
            plt.xticks(xticks)
            plt.setp(plt.gca().get_xticklabels(), visible=False)

            xticks *= 2

            plt.subplot(nplots, 1, 2, frameon=False)
            plt.imshow(mfcc[0, :, start_token * 2: end_token * 2].cpu(), aspect="auto", origin="lower")
            plt.yticks([])
            plt.ylabel("MFCC")

        plt.xticks(xticks, xticklabels)
        plt.xlabel("Time (s)")

    jumps = np.diff(alignment.index1s)
    jumps = np.pad(jumps, (1, 0), constant_values=1)
    jumps = jumps.astype(bool)
    jumps = alignment.index2s[jumps]
    jumps = np.pad(jumps, (0, 1), constant_values=alignment.index2s[-1])

    jumps_start = jumps
    disfluences = {}
    if detect_disfluencies:
        jumps_start = copy.copy(jumps)

        for (i_token, (tok, begin, end)) in enumerate(zip(tokens, jumps[:-1], jumps[1:])):

            # Find local maxima in the portion of attention weights
            attention_weights = -weights[i_token, begin:end]
            peaks, properties = find_peaks(attention_weights,
                width=3,
                prominence=0.02,
            )
            # If more than 
            if len(peaks) > 1:
                if "left_ips" in properties:
                    left = [round(x) for x in properties["left_ips"]]
                else:
                    left = properties["left_bases"]

                new_begin = left[-1] + begin

                jumps_start[i_token] = new_begin

                if new_begin != begin:
                    is_punctuation = tokenizer.decode_with_timestamps([tok]) in _punctuation
                    if not is_punctuation:
                        disfluences[i_token] = (begin, jumps_start[i_token])
                    else:
                        disfluences[i_token+1] = (begin, end)

            if plot:
                plt.subplot(nplots, 1, 2 + plot_mfcc, frameon=False)
                plt.plot(range(begin,end), attention_weights)
                plt.xlim(0, end)
                
                for i, p in enumerate(peaks):
                    color = 'red' if (len(peaks)>1 and i<len(peaks)-1) else 'green'
                    plt.vlines(begin+p, 0, 1, color=color, linestyle="--")

                if "left_bases" in properties:
                    def barxxy(start, end, y, **kwargs):
                        middle = (start + end) / 2
                        plt.bar(middle, y, width=end-start, **kwargs)
                    color = 'red' if len(peaks)>1 else 'green'
                    barxxy(begin+properties["left_bases"], begin+properties["right_bases"], properties.get("prominences",[1]*len(properties["left_bases"])), alpha=0.5,
                        # put a line with a custom color
                        linewidth=1, edgecolor=color
                    )
                if "left_ips" in properties:
                    for left in properties["left_ips"]:
                        plt.vlines(begin+left, 0, 0.5, color='green', linestyle=':')
                    for right in properties["right_ips"]:  
                        plt.vlines(begin+right, 0, 0.5, color='red', linestyle=':')


    # display the word-level timestamps in a table
    word_boundaries = np.cumsum([len(t) for t in word_tokens])
    word_boundaries = np.pad(word_boundaries, (1, 0))
    begin_times = jumps_start[word_boundaries[:-1]]
    end_times = jumps[word_boundaries[1:] - num_punctuations_per_tokens]

    begin_times = begin_times * AUDIO_TIME_PER_TOKEN
    end_times = end_times * AUDIO_TIME_PER_TOKEN

    if detect_disfluencies:
        to_be_added = []
        i_start = 0
        for i_word, toks in enumerate(word_tokens[:-1]):
            i_end = i_start + len(toks)
            if i_start in disfluences and i_word > 0:
                begin, end = disfluences[i_start]
                begin *= AUDIO_TIME_PER_TOKEN
                end *= AUDIO_TIME_PER_TOKEN
                to_be_added.append((i_word, begin, end))
            i_start = i_end
        # Add from the end to avoid messing up the indices
        for (i_word, begin, end) in to_be_added[-1::-1]:
            words.insert(i_word, DISFLUENCY_MARK)
            word_tokens.insert(i_word, [])
            word_tokens_indices.insert(i_word, [])
            begin_times = np.insert(begin_times, i_word, begin)
            end_times = np.insert(end_times, i_word, end)

    # Ignore start / end tokens
    if not refine_whisper_precision_nframes:
        begin_times[1] = begin_times[0]
    if not refine_whisper_precision_nframes:
        end_times[-2] = end_times[-1]
    if unfinished_decoding:
        words = words[1:]
        word_tokens = word_tokens[1:]
        word_tokens_indices = word_tokens_indices[1:]
        begin_times = begin_times[1:]
        end_times = end_times[1:]
    else:
        words = words[1:-1]
        word_tokens = word_tokens[1:-1]
        word_tokens_indices = word_tokens_indices[1:-1]
        begin_times = begin_times[1:-1]
        end_times = end_times[1:-1]

    if plot:
        ymin = 1

        plt.subplot(nplots, 1, 1)
        for i, (w, ws, begin, end) in enumerate(zip(words, word_tokens, begin_times, end_times)):
            ymax = ymin + len(ws)
            if mfcc is None:
                plt.text(begin / AUDIO_TIME_PER_TOKEN, num_tokens-0.5, w, ha="left", va="top", color="red")
            for x in [begin, end,]:
                plt.axvline(x / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted",
                            ymin=1-ymin/num_tokens,
                            ymax=0,  # 1-ymax/num_tokens,
                            )
            ymin = ymax

        if plot_mfcc:
            plt.subplot(nplots, 1, 2)
            for i, (w, begin, end) in enumerate(zip(words, begin_times, end_times)):
                plt.text(begin * 2 / AUDIO_TIME_PER_TOKEN, mfcc.shape[-2]*1.05, w, ha="left", va="bottom", color="red")
                for x in [begin, end,]:
                    plt.axvline(x * 2 / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted")

        if isinstance(plot, str):
            plt.savefig(f"{plot}.alignment{num_alignment_for_plot:03d}.jpg", bbox_inches='tight', pad_inches=0)
        else:
            plt.show()

    return [
        dict(
            text=word,
            start=round_timestamp(begin + start_time),
            end=round_timestamp(end + start_time),
            tokens=tokens,
            tokens_indices=tokens_indices,
        )
        for word, begin, end, tokens, tokens_indices in zip(words, begin_times, end_times, word_tokens, word_tokens_indices)
        if not word.startswith("<|")
    ]

def find_start_padding(mfcc):
    """ Return start of padding given the mfcc, or None if there is no padding """
    last_mfcc = mfcc[0, :, -1]
    if torch.min(last_mfcc) == torch.max(last_mfcc) == 0:
        candidate_index = mfcc.shape[-1] - 2
        while candidate_index > 0:
            candidate = mfcc[0, :, candidate_index]
            if not torch.equal(candidate, last_mfcc):
                return candidate_index + 1
            candidate_index -= 1
        return 0 # WTF!?

def round_confidence(x):
    return round(x, 3)

def round_timestamp(x):
    return round(x, 2)

_punctuation = "".join(c for c in string.punctuation if c not in ["-", "'"]) + "。,!?:”、…"

def split_tokens_on_unicode(tokens: list, tokenizer, remove_punctuation_from_words=False, isolate_punctuations=False):
    words = []
    word_tokens = []
    word_tokens_indices = []
    current_tokens = []

    for token in tokens:
        current_tokens.append(token)
        decoded = tokenizer.decode_with_timestamps([t for t in current_tokens if t < tokenizer.eot or t >= tokenizer.timestamp_begin])
        if "\ufffd" not in decoded:
            empty_tokens = [""] * (len(current_tokens)-1)
            punctuation = not isolate_punctuations and (decoded.strip() and decoded.strip() in _punctuation)
            previous_special = len(word_tokens_indices) > 0 and (word_tokens_indices[-1][-1] >= tokenizer.timestamp_begin)
            if punctuation and not previous_special:
                if len(words) == 0:
                    words = [""]
                    word_tokens = [[]]
                if not remove_punctuation_from_words:
                    words[-1] += decoded
                word_tokens[-1].extend(empty_tokens + [decoded])
                word_tokens_indices[-1].extend(current_tokens)
            else:
                words.append(decoded)
                word_tokens.append(empty_tokens + [decoded])
                word_tokens_indices.append(current_tokens)
            current_tokens = []

    return words, word_tokens, word_tokens_indices


def split_tokens_on_spaces(tokens: torch.Tensor, tokenizer, remove_punctuation_from_words=False):
    subwords, subword_tokens_list, subword_tokens_indices_list = split_tokens_on_unicode(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words)
    words = []
    word_tokens = []
    word_tokens_indices = []

    for i, (subword, subword_tokens, subword_tokens_indices) in enumerate(zip(subwords, subword_tokens_list, subword_tokens_indices_list)):
        special = (subword_tokens_indices[0] >= tokenizer.timestamp_begin)
        previous_special = (i > 0) and (subword_tokens_indices_list[i-1][0] >= tokenizer.timestamp_begin)
        next_special = (i < len(subword_tokens_indices_list)-1) and (subword_tokens_indices_list[i+1][0] >= tokenizer.timestamp_begin)
        previous_space = (i > 0) and (not subwords[i-1].strip())
        is_space = not subword.strip()
        with_space = subword.startswith(" ") and not is_space
        punctuation = not is_space and subword.strip() in _punctuation
        if special or (not previous_space and (previous_special or (with_space and not punctuation) or (is_space and not next_special))):
            words.append(subword.strip())
            word_tokens.append(subword_tokens)
            word_tokens_indices.append(subword_tokens_indices)
        else:
            words[-1] = words[-1] + subword.strip()
            word_tokens[-1].extend(subword_tokens)
            word_tokens_indices[-1].extend(subword_tokens_indices)

    return words, word_tokens, word_tokens_indices

def check_vad_method(method, with_version=False):
    if method in [True, "True", "true"]:
        return check_vad_method("silero") # default method
    elif method in [False, "False", "false"]:
        return False
    elif method.startswith("silero"):
        version = None
        if method != "silero":
            assert method.startswith("silero:"), f"Got unexpected VAD method {method}"
            version = method.split(":")[1]
            if not version.startswith("v"):
                version = "v" + version
            try:
                assert float(version[1:]) >= 1
            except:
                raise ValueError(f"Got unexpected silero version {version} (please check https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)")
        if with_version:
            return ("silero", version)
        else:
            return method
    elif method == "auditok":
        try:
            import auditok
        except ImportError:
            raise ImportError("Please install auditok to use the auditok VAD (or use another VAD method)")
    else:
        raise ValueError(f"Got unexpected VAD method {method}")
    return method

_silero_vad_model = None
_has_onnx = None
def get_vad_segments(audio,
    output_sample=False,
    min_speech_duration=0.1,
    min_silence_duration=0.1,
    dilatation=0.5,
    method="silero",
    ):
    """
    Get speech segments from audio using Silero VAD
    parameters:
        audio: torch.Tensor
            audio data *in 16kHz*
        output_sample: bool
            if True, return start and end in samples instead of seconds
        min_speech_duration: float
            minimum duration (in sec) of a speech segment
        min_silence_duration: float
            minimum duration (in sec) of a silence segment
        dilatation: float
            how much (in sec) to enlarge each speech segment detected by the VAD
        method: str
            VAD method to use (auditok, silero, silero:v3.1)
    """
    global _silero_vad_model, _silero_get_speech_ts, _has_onnx

    if method.startswith("silero"):

        version = None
        _, version = check_vad_method(method, True)
        # See discussion https://github.com/linto-ai/whisper-timestamped/pull/142/files#r1398326287
        need_folder_hack = version and (version < "v4")

        if _silero_vad_model is None:
            # ONNX support since 3.1 in silero
            if (version is None or version >= "v3.1") and (_has_onnx is not False):
                onnx=True
                try:
                    import onnxruntime
                    onnxruntime.set_default_logger_severity(3) # Remove warning "Removing initializer 'XXX'. It is not used by any node and should be removed from the model."
                    _has_onnx = True
                except ImportError as err:
                    logger.warning(f"Please install onnxruntime to use more efficiently silero VAD")
                    _has_onnx = False
                    onnx=False
            else:
                onnx=False

            # Choose silero version because of problems with version 4, see  https://github.com/linto-ai/whisper-timestamped/issues/74
            repo_or_dir_master = os.path.expanduser("~/.cache/torch/hub/snakers4_silero-vad_master")
            repo_or_dir_specific = os.path.expanduser(f"~/.cache/torch/hub/snakers4_silero-vad_{version}") if version else repo_or_dir_master
            repo_or_dir = repo_or_dir_specific
            tmp_folder = None
            def apply_folder_hack():
                nonlocal tmp_folder
                if os.path.exists(repo_or_dir_master):
                    tmp_folder = repo_or_dir_master + ".tmp"
                    shutil.move(repo_or_dir_master, tmp_folder)
                # Make a symlink to the v3.1 model, otherwise it fails
                input_exists = os.path.exists(repo_or_dir_specific)
                if not input_exists:
                    # Make dummy file for the symlink to work
                    os.makedirs(repo_or_dir_specific, exist_ok=True)
                os.symlink(repo_or_dir_specific, repo_or_dir_master)
                if not input_exists:
                    shutil.rmtree(repo_or_dir_specific)

            source = "local"
            if not os.path.exists(repo_or_dir):
                # Load specific version of silero
                repo_or_dir = f"snakers4/silero-vad:{version}" if version else "snakers4/silero-vad"
                source = "github"
            if need_folder_hack:
                apply_folder_hack()
            try:
                _silero_vad_model, utils = torch.hub.load(repo_or_dir=repo_or_dir, model="silero_vad", onnx=onnx, source=source)
            except ImportError as err:
                raise RuntimeError(f"Please install what is needed to use the silero VAD (or use another VAD method)") from err
            except Exception as err:
                raise RuntimeError(f"Problem when installing silero with version {version}. Check versions here: https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models") from err
            finally:
                if need_folder_hack:
                    if os.path.exists(repo_or_dir_master):
                        os.remove(repo_or_dir_master)
                    if tmp_folder:
                        shutil.move(tmp_folder, repo_or_dir_master)
            assert os.path.isdir(repo_or_dir_specific), f"Unexpected situation: missing {repo_or_dir_specific}"

            _silero_get_speech_ts = utils[0]

        # Cheap normalization of the volume
        audio = audio / max(0.1, audio.abs().max())

        segments = _silero_get_speech_ts(audio, _silero_vad_model,
            min_speech_duration_ms = round(min_speech_duration * 1000),
            min_silence_duration_ms = round(min_silence_duration * 1000),
            return_seconds = False,
        )

    elif method == "auditok":
        import auditok

        # Cheap normalization of the volume
        audio = audio / max(0.1, audio.abs().max())

        data = (audio.numpy() * 32767).astype(np.int16).tobytes()

        segments = auditok.split(
            data,
            sampling_rate=SAMPLE_RATE,        # sampling frequency in Hz
            channels=1,                       # number of channels
            sample_width=2,                   # number of bytes per sample
            min_dur=min_speech_duration,      # minimum duration of a valid audio event in seconds
            max_dur=len(audio)/SAMPLE_RATE,   # maximum duration of an event
            max_silence=min_silence_duration, # maximum duration of tolerated continuous silence within an event
            energy_threshold=50,
            drop_trailing_silence=True,
        )

        segments = [{"start": s._meta.start * SAMPLE_RATE, "end": s._meta.end * SAMPLE_RATE} for s in segments]

    else:
        raise ValueError(f"Got unexpected VAD method {method}")

    if dilatation > 0:
        dilatation = round(dilatation * SAMPLE_RATE)
        new_segments = []
        for seg in segments:
            new_seg = {
                "start": max(0, seg["start"] - dilatation),
                "end": min(len(audio), seg["end"] + dilatation)
            }
            if len(new_segments) > 0 and new_segments[-1]["end"] >= new_seg["start"]:
                new_segments[-1]["end"] = new_seg["end"]
            else:
                new_segments.append(new_seg)
        segments = new_segments

    ratio = 1 if output_sample else 1 / SAMPLE_RATE

    if ratio != 1:
        for seg in segments:
            seg["start"] *= ratio
            seg["end"] *= ratio
    if output_sample:
        for seg in segments:
            seg["start"] = round(seg["start"])
            seg["end"] = round(seg["end"])
    return segments

def remove_non_speech(audio,
    use_sample=False,
    min_speech_duration=0.1,
    min_silence_duration=1,
    method="silero",
    plot=False,
    ):
    """
    Remove non-speech segments from audio (using Silero VAD),
    glue the speech segments together and return the result along with
    a function to convert timestamps from the new audio to the original audio

    parameters:
        audio: torch.Tensor
            audio data *in 16kHz*
        use_sample: bool
            if True, return start and end in samples instead of seconds
        min_speech_duration: float
            minimum duration (in sec) of a speech segment
        min_silence_duration: float
            minimum duration (in sec) of a silence segment
        method: str
            method to use to remove non-speech segments
        plot: bool or str
            if True, plot the result.
            If a string, save the plot to the given file
    """

    segments = get_vad_segments(
        audio,
        output_sample=True,
        min_speech_duration=min_speech_duration,
        min_silence_duration=min_silence_duration,
        method=method,
    )

    segments = [(seg["start"], seg["end"]) for seg in segments]
    if len(segments) == 0:
        segments = [(0, audio.shape[-1])]

    audio_speech = torch.cat([audio[..., s:e] for s,e in segments], dim=-1)

    if plot:
        import matplotlib.pyplot as plt
        plt.figure()
        max_num_samples = 10000
        step = (audio.shape[-1] // max_num_samples) + 1
        times = [i*step/SAMPLE_RATE for i in range((audio.shape[-1]-1) // step + 1)]
        plt.plot(times, audio[::step])
        for s, e in segments:
            plt.axvspan(s/SAMPLE_RATE, e/SAMPLE_RATE, color='red', alpha=0.1)
        if isinstance(plot, str):
            plt.savefig(f"{plot}.VAD.jpg", bbox_inches='tight', pad_inches=0)
        else:
            plt.show()

    if not use_sample:
        segments = [(float(s)/SAMPLE_RATE, float(e)/SAMPLE_RATE) for s,e in segments]
 
    return audio_speech, lambda t, t2 = None: do_convert_timestamps(segments, t, t2)

def do_convert_timestamps(segments, t, t2 = None):
    """
    Convert timestamp from audio without non-speech segments to original audio (with non-speech segments)

    parameters:
        segments: list of tuple (start, end) corresponding to non-speech segments in original audio
        t: timestamp to convert
        t2: second timestamp to convert (optional), when the two timestamps should be in the same segment
    """
    assert len(segments)
    ioffset = 0 # Input offset
    ooffset = 0 # Output offset
    ipreviousend = 0
    result = []
    for istart, iend in segments:
        ostart = ooffset
        oend = ostart + (iend - istart)
        ooffset = oend
        ioffset += istart - ipreviousend
        ipreviousend = iend
        t_in = t <= oend
        t2_in = t_in if t2 is None else t2 <= oend
        if t_in or t2_in:
            result.append([
                max(istart, min(iend, ioffset + t)),
                max(istart, min(iend, ioffset + t2)) if t2 is not None else None
            ])
            if t_in and t2_in:
                break
    if not len(result):
        result.append(
            [ioffset + t, ioffset + t2 if t2 is not None else None]
        )
        
    if len(result) > 1:
        # Minimize difference between durations
        result = sorted(result, key=lambda x: abs(abs(t2-t) - abs(x[1]-x[0])))
    result = result[0]
    if t2 is None:
        result = round(result[0], 2)
    else:
        result = [round(x, 2) for x in result]
    return result

def remove_last_null_duration_words(transcription, words, recompute_text=False):
    """
    Remove words with null duration happening at the end of a chunk (probable Whisper hallucinations)
    """
    # First group segments by audio chunk
    segments_groups = {}
    seek = None
    current_chunk = -1
    for i, segment in enumerate(transcription["segments"]):
        if segment["seek"] != seek:
            current_chunk += 1
            seek = segment["seek"]
        segments_groups[i] = current_chunk

    # Remove words with null duration happening at the end of a chunk
    current_chunk = -1
    is_last_empty = False
    to_remove = []
    for i, word in enumerate(words[::-1]): # Reverse order
        i = len(words) - i - 1
        empty = (word["start"] == word["end"])
        idx_segment = word["idx_segment"]
        group = segments_groups[idx_segment]
        if current_chunk != group:
            is_last_empty = empty
            current_chunk = group
        elif not empty:
            is_last_empty = False
        if is_last_empty:
            # Remove word
            to_remove.append(i)
            # Shorten text of segment
            full_word = "".join(word["tokens"])
            logger.debug(f"Removing word {i+1}/{len(words)} \"{full_word}\" with empty duration at the end of segment {idx_segment+1}/{len(transcription['segments'])}")
            segment = transcription["segments"][idx_segment]
            text = segment["text"]
            if not text.endswith(full_word): # see issue #62
                if text.endswith(full_word[:-1]):
                    full_word = full_word[:-1]
                elif text[:-1].endswith(full_word):
                    text = text[:-1]
                else:
                    raise RuntimeError(f"\"{text}\" not ending with \"{full_word}\"")
            text = text[:-len(full_word)]
            if i > 0 and words[i-1]["idx_segment"] == idx_segment:
                segment["text"] = text
            else:
                logger.debug(f"Removing empty segment {idx_segment}")
                # Remove segment with no more words
                transcription["segments"].pop(idx_segment)
                for j in range(i+1, len(words)):
                    words[j]["idx_segment"] -= 1
            recompute_text = True

    for i in to_remove:
        words.pop(i) # Warning: inplace modification

    if recompute_text:
        transcription["text"] = "".join([s["text"] for s in transcription["segments"]])

    return transcription, words


def ensure_increasing_positions(segments, min_duration=0):
    """
    Ensure that "start" and "end" come in increasing order
    """
    has_modified_backward = False
    previous_end = 0
    for i, seg in enumerate(segments):
        if seg["start"] < previous_end:
            assert i > 0
            new_start = round_timestamp((previous_end + seg["start"]) / 2)
            if new_start < segments[i-1]["start"] + min_duration:
                new_start = previous_end
            else:
                segments[i-1]["end"] = new_start
                has_modified_backward = True
            seg["start"] = new_start
        if seg["end"] <= seg["start"] + min_duration:
            seg["end"] = seg["start"] + min_duration
        previous_end = seg["end"]
    if has_modified_backward:
        return ensure_increasing_positions(segments, min_duration)

    previous_end = 0
    for seg in segments:
        seg["start"] = round_timestamp(seg["start"])
        seg["end"] = round_timestamp(seg["end"])
        assert seg["start"] >= previous_end, f"Got segment {seg} coming before the previous finishes ({previous_end} > {seg['start']})"
        assert seg["end"] >= seg["start"], f"Got segment {seg} with end < start"
        previous_end = seg["end"]

    return segments

## Some utilities for writing transcripts to files

def flatten(list_of_lists, key = None):
    for sublist in list_of_lists:
        for item in sublist.get(key, []) if key else sublist:
            yield item

def remove_keys(list_of_dicts, key):
    for d in list_of_dicts:
        yield {k: d[k] for k in d.keys() - {key}}
        

def write_csv(transcript, file, sep = ",", text_first=True, format_timestamps=None, header=False):
    writer = csv.writer(file, delimiter=sep)
    if format_timestamps is None: format_timestamps = lambda x: x
    if header is True:
        header = ["text", "start", "end"] if text_first else ["start", "end", "text"]
    if header:
        writer.writerow(header)
    if text_first:
        writer.writerows(
            [[segment["text"].strip(), format_timestamps(segment["start"]), format_timestamps(segment["end"])] for segment in transcript]
        )
    else:
        writer.writerows(
            [[format_timestamps(segment["start"]), format_timestamps(segment["end"]), segment["text"].strip()] for segment in transcript]
        )

# https://stackoverflow.com/questions/66588715/runtimeerror-cudnn-error-cudnn-status-not-initialized-using-pytorch
# CUDA initialization may fail on old GPU card
def force_cudnn_initialization(device=None, s=32):
    if device is None:
        device = get_default_device()
    torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=device), torch.zeros(s, s, s, s, device=device))

def get_default_device():
    if torch.cuda.is_available():
        device = "cuda"
    elif find_spec('torch.xpu') is not None and torch.xpu.is_available():
        device = "xpu"
    else:
        device = "cpu"
    return device

# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
# highly correlated to the word-level timing, i.e. the alignment between audio and text tokens.
_ALIGNMENT_HEADS = {
    "tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00",
    "tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO",
    "base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00",
    "base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m",
    "small.en": b"ABzY8>?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00",
    "small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000",
    "medium.en": b"ABzY8usPae0{>%R7<zz_OvQ{)4kMa0BMw6u5rT}kRKX;$NfYBv00*Hl@qhsU00",
    "medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9",
    "large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
    "large-v2": b'ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj',
    "large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
}

_PARAMETERS_TO_MODEL_NAME = {
    37184256 : "tiny.en",
    37184640 : "tiny",
    71825408 : "base.en",
    71825920 : "base",
    240582144 : "small.en",
    240582912 : "small",
    762320896 : "medium.en",
    762321920 : "medium",
    1541384960 : "large",
    1541570560 : "large-v3",
}

def get_alignment_heads(model, max_top_layer=3):
    if hasattr(model, "alignment_heads"): # Since version 20230306
        return model.alignment_heads
    num_parameters = _get_number_of_parameters(model)
    num_layers = model.dims.n_text_layer
    num_heads = model.dims.n_text_head
    if num_parameters not in _PARAMETERS_TO_MODEL_NAME:
        logger.warning("Could not retrieve alignment heads : taking all attention heads from the top layers")
        return None
    model_name = _PARAMETERS_TO_MODEL_NAME[num_parameters]
    if model_name == "large":
        if next(model.parameters())[0,0,0] > 0:
            model_name = "large-v1"
        else:
            model_name = "large-v2"
    return _get_alignment_heads(model_name, num_layers, num_heads)

def _get_alignment_heads(model_name, num_layers, num_heads):
    dump = _ALIGNMENT_HEADS[model_name]
    array = np.frombuffer(gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
    mask = torch.from_numpy(array).reshape(num_layers, num_heads)
    alignment_heads = mask.to_sparse()
    return alignment_heads

def _get_number_of_parameters(model):
    return sum(p.numel() for p in model.parameters())

from typing import Optional, Union
def load_model(
    name: str,
    device: Optional[Union[str, torch.device]] = None,
    download_root: str = None,
    in_memory: bool = False,
):
    extension = os.path.splitext(name)[-1] if os.path.isfile(name) else None

    if name in whisper.available_models() or extension == ".pt":
        return whisper.load_model(name, device=device, download_root=download_root, in_memory=in_memory)
    
    # Otherwise, assume transformers
    if extension in [".ckpt", ".bin"]:
        model_path = name
    else:
        # Search for the cached file (download if necessary)
        try:
            import transformers
        except ImportError:
            raise ImportError(f"If you are trying to download a HuggingFace model with {name}, please install first the transformers library")
        from transformers.utils import cached_file

        try:
            model_path = cached_file(name, "pytorch_model.bin", cache_dir=download_root, use_auth_token=None, revision=None)
        except Exception as e:
            try:
                if isinstance(e, OSError):
                    model_path = cached_file(name, "whisper.ckpt", cache_dir=download_root, use_auth_token=None, revision=None)
                else:
                    raise e
            except:
                raise RuntimeError(f"Original error: {e}\nCould not find model {name} from HuggingFace nor local folders.")
    # Load HF Model
    hf_state_dict = torch.load(model_path, map_location="cpu")

    # Rename layers
    for key in list(hf_state_dict.keys())[:]:
        new_key = hf_to_whisper_states(key)
        if new_key is None:
            hf_state_dict.pop(key)
        elif new_key != key:
            hf_state_dict[new_key] = hf_state_dict.pop(key)
    

    # Init Whisper Model and replace model weights
    dims = whisper.model.ModelDimensions(**states_to_dim(hf_state_dict))

    if "proj_out.weight" in hf_state_dict:
        hf_state_dict["decoder.proj_out.weight"] = hf_state_dict.pop("proj_out.weight")
        logger.warning("Using untied projection layer")
        whisper_model = WhisperUntied(dims)
    else:
        whisper_model = whisper.model.Whisper(dims)

    whisper_model.load_state_dict(hf_state_dict)
    del hf_state_dict
    if hasattr(whisper_model, "alignment_heads"):
        del whisper_model.alignment_heads # Will be recomputed later
    whisper_model = whisper_model.to(device)
    return whisper_model

# Credit: https://github.com/openai/whisper/discussions/830
def hf_to_whisper_states(text):
    # From Speechbrain
    if text == "_mel_filters":
        return None
    
    # From PEFT
    if "default" in text:
        # print(f"WARNING: Ignoring {text}")
        return None
    if text.startswith("base_model.model."):
        text = text[len("base_model.model."):]

    text = re.sub('.layers.', '.blocks.', text)
    text = re.sub('.self_attn.', '.attn.', text)
    text = re.sub('.q_proj.', '.query.', text)
    text = re.sub('.k_proj.', '.key.', text)
    text = re.sub('.v_proj.', '.value.', text)
    text = re.sub('.out_proj.', '.out.', text)
    text = re.sub('.fc1.', '.mlp.0.', text)
    text = re.sub('.fc2.', '.mlp.2.', text)
    text = re.sub('.fc3.', '.mlp.3.', text)
    text = re.sub('.fc3.', '.mlp.3.', text)
    text = re.sub('.encoder_attn.', '.cross_attn.', text)
    text = re.sub('.cross_attn.ln.', '.cross_attn_ln.', text)
    text = re.sub('.embed_positions.weight', '.positional_embedding', text)
    text = re.sub('.embed_tokens.', '.token_embedding.', text)
    text = re.sub('model.', '', text)
    text = re.sub('attn.layer_norm.', 'attn_ln.', text)
    text = re.sub('.final_layer_norm.', '.mlp_ln.', text)
    text = re.sub('encoder.layer_norm.', 'encoder.ln_post.', text)
    text = re.sub('decoder.layer_norm.', 'decoder.ln.', text)
    return text

def states_to_dim(state_dict):
    n_audio_state = len(state_dict['encoder.ln_post.bias'])
    n_text_state = len(state_dict["decoder.ln.bias"])
    return {
        "n_mels":        state_dict["encoder.conv1.weight"].shape[1],           # 80
        "n_vocab":       state_dict["decoder.token_embedding.weight"].shape[0], # 51864 / 51865
        "n_audio_ctx":   state_dict["encoder.positional_embedding"].shape[0],   # 1500
        "n_audio_state": n_audio_state,         # 384 / 512 / 768 / 1024 / 1280
        "n_audio_head":  n_audio_state // 64,   # 6 / 8 / 12 / 16 / 20
        "n_audio_layer": len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "encoder.blocks." in k])), # 4 / 6 / 12 / 24 / 32
        "n_text_ctx":    state_dict["decoder.positional_embedding"].shape[0],   # 448
        "n_text_state":  n_text_state,          # 384 / 512 / 768 / 1024 / 1280
        "n_text_head":   n_text_state // 64,    # 6 / 8 / 12 / 16 / 20
        "n_text_layer":  len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "decoder.blocks." in k])), # 4 / 6 / 12 / 24 / 32
    }

class TextDecoderUntied(whisper.model.TextDecoder):
    """
    Same as TextDecoder but with untied weights
    """
    def __init__(self, *args, **kwargs):
        import torch
        super().__init__(*args, **kwargs)

        n_vocab, n_state = self.token_embedding.weight.shape

        self.proj_out = torch.nn.Linear(n_state, n_vocab, bias=False)

    def forward(self, x, xa, kv_cache = None):
        offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
        x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
        x = x.to(xa.dtype)

        for block in self.blocks:
            x = block(x, xa, mask=self.mask, kv_cache=kv_cache)

        x = self.ln(x)

        # logits = self.proj_out(x).float()
        # logits = (x @ torch.transpose(self.proj_out.weight.to(x.dtype), 0, 1)).float()
        logits = self.proj_out.to(x.dtype)(x).float()

        return logits

class WhisperUntied(whisper.model.Whisper):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.decoder = TextDecoderUntied(
            self.dims.n_vocab,
            self.dims.n_text_ctx,
            self.dims.n_text_state,
            self.dims.n_text_head,
            self.dims.n_text_layer,
        )

def cli():

    import os
    import sys
    import argparse
    import json

    from whisper.utils import str2bool, optional_float, optional_int
    
    try:
        # Old whisper version # Before https://github.com/openai/whisper/commit/da600abd2b296a5450770b872c3765d0a5a5c769
        from whisper.utils import write_txt, write_srt, write_vtt
        write_tsv = lambda transcript, file: write_csv(transcript, file, sep="\t", header=True, text_first=False, format_timestamps=lambda x: round(1000 * x))
    
    except ImportError:
        # New whisper version
        from whisper.utils import get_writer

        def do_write(transcript, file, output_format):
            writer = get_writer(output_format, os.path.curdir)
            try:
                return writer.write_result({"segments": transcript}, file)
            except TypeError:
                # Version > 20230314
                return writer.write_result({"segments": list(transcript)}, file, {
                    "highlight_words": False,
                    "max_line_width": None,
                    "max_line_count": None,
                })
        def get_do_write(output_format):
            return lambda transcript, file: do_write(transcript, file, output_format)

        write_txt = get_do_write("txt")
        write_srt = get_do_write("srt")
        write_vtt = get_do_write("vtt")
        write_tsv = get_do_write("tsv")

    parser = argparse.ArgumentParser(
        description='Transcribe a single audio with whisper and compute word timestamps',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument('-v', '--version', help="show version and exit", action='version', version=f'{__version__}')
    parser.add_argument('--versions', help="show versions (of whisper-timestamped and whisper) and exit", action='version',
                        version=f'{__version__} -- Whisper {whisper.__version__} in {os.path.realpath(os.path.dirname(whisper.__file__))}')

    parser.add_argument('audio', help="audio file(s) to transcribe", nargs='+')
    parser.add_argument('--model', help=f"name of the Whisper model to use. Examples: {', '.join(whisper.available_models())}", default="small")
    parser.add_argument("--model_dir", default=None, help="the path to save model files; uses ~/.cache/whisper by default", type=str)
    parser.add_argument("--device", default=get_default_device(), help="device to use for PyTorch inference")
    parser.add_argument("--output_dir", "-o", default=None, help="directory to save the outputs", type=str)
    valid_formats = ["txt", "vtt", "srt", "tsv", "csv", "json"]
    def str2output_formats(string):
        if string == "all":
            return valid_formats
        formats = string.split(",")
        for format in formats:
            if format not in valid_formats:
                raise ValueError(f"Expected one of {valid_formats}, got {format}")
        return formats
    parser.add_argument("--output_format", "-f", default="all", help=f"Format(s) of the output file(s). Possible formats are: {', '.join(valid_formats)}. Several formats can be specified by using commas (ex: \"json,vtt,srt\"). By default (\"all\"), all available formats will be produced", type=str2output_formats)

    parser.add_argument("--task", default="transcribe", help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')", choices=["transcribe", "translate"], type=str)
    parser.add_argument('--language', help=f"language spoken in the audio, specify None to perform language detection.", choices=sorted(whisper.tokenizer.LANGUAGES.keys()) + sorted([k.title() for k in whisper.tokenizer.TO_LANGUAGE_CODE.keys()]), default=None)
    # f"{', '.join(sorted(k+'('+v+')' for k,v in whisper.tokenizer.LANGUAGES.items()))}

    parser.add_argument('--vad', default=False, help="whether to run Voice Activity Detection (VAD) to remove non-speech segment before applying Whisper model (removes hallucinations). Can be: True, False, silero, silero:3.1 (or another version), or autitok. Some additional libraries might be needed")
    parser.add_argument('--detect_disfluencies', default=False, help="whether to try to detect disfluencies, marking them as special words [*]", type=str2bool)
    parser.add_argument('--recompute_all_timestamps', default=not TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, help="Do not rely at all on Whisper timestamps (Experimental option: did not bring any improvement, but could be useful in cases where Whipser segment timestamp are wrong by more than 0.5 seconds)", type=str2bool)
    parser.add_argument("--punctuations_with_words", default=True, help="whether to include punctuations in the words", type=str2bool)
        
    parser.add_argument("--temperature", default=0.0, help="temperature to use for sampling", type=float)
    parser.add_argument("--best_of", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of candidates when sampling with non-zero temperature")
    parser.add_argument("--beam_size", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of beams in beam search, only applicable when temperature is zero")
    parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
    parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")

    parser.add_argument("--suppress_tokens", default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations", type=str)
    parser.add_argument("--initial_prompt", default=None, help="optional text to provide as a prompt for the first window.", type=str)
    parser.add_argument("--condition_on_previous_text", default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop", type=str2bool)
    parser.add_argument("--fp16", default=None, help="whether to perform inference in fp16; Automatic by default (True if GPU available, False otherwise)", type=str2bool)

    parser.add_argument("--temperature_increment_on_fallback", default=0.0 if USE_EFFICIENT_BY_DEFAULT else 0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below", type=optional_float)
    parser.add_argument("--compression_ratio_threshold", default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed", type=optional_float)
    parser.add_argument("--logprob_threshold", default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed", type=optional_float)
    parser.add_argument("--no_speech_threshold", default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence", type=optional_float)
    parser.add_argument("--threads", default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS", type=optional_int)

    parser.add_argument("--compute_confidence", default=True, help="whether to compute confidence scores for words", type=str2bool)
    parser.add_argument("--verbose", type=str2bool, default=False, help="whether to print out the progress and debug messages of Whisper")
    parser.add_argument('--plot', help="plot word alignments (save the figures if an --output_dir is specified, otherwhise just show figures that have to be closed to continue)", default=False, action="store_true")
    parser.add_argument('--debug', help="print some debug information about word alignement", default=False, action="store_true")

    class ActionSetAccurate(argparse.Action):
        def __init__(self, option_strings, dest, nargs=None, **kwargs):
            assert nargs is None
            super().__init__(option_strings, dest, nargs=0, **kwargs)
        def __call__(self, parser, namespace, values, option_string=None):
            setattr(namespace, "best_of", 5)
            setattr(namespace, "beam_size", 5)
            setattr(namespace, "temperature_increment_on_fallback", 0.2)
    parser.add_argument('--accurate', help="Shortcut to use the same default option as in Whisper (best_of=5, beam_search=5, temperature_increment_on_fallback=0.2)", action=ActionSetAccurate)

    class ActionSetEfficient(argparse.Action):
        def __init__(self, option_strings, dest, nargs=None, **kwargs):
            assert nargs is None
            super().__init__(option_strings, dest, nargs=0, **kwargs)
        def __call__(self, parser, namespace, values, option_string=None):
            setattr(namespace, "best_of", None)
            setattr(namespace, "beam_size", None)
            setattr(namespace, "temperature_increment_on_fallback", None)
    parser.add_argument('--efficient', help="Shortcut to disable beam size and options that requires to sample several times, for an efficient decoding", action=ActionSetEfficient)

    parser.add_argument('--naive', help="use naive approach, doing inference twice (once to get the transcription, once to get word timestamps and confidence scores).", default=False, action="store_true")

    args = parser.parse_args().__dict__
    args.pop("accurate")
    args.pop("efficient")

    temperature = args.pop("temperature")
    temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
    if temperature_increment_on_fallback:
        temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
    else:
        temperature = [temperature]

    threads = args.pop("threads")
    if threads:
        torch.set_num_threads(threads)

    audio_files = args.pop("audio")
    
    model = args.pop("model")
    device = args.pop("device")
    model_dir = args.pop("model_dir")

    if device.lower().startswith("cuda"):
        force_cudnn_initialization(device)

    output_format = args.pop("output_format")

    model = load_model(model, device=device, download_root=model_dir)

    plot_word_alignment = args.pop("plot")

    debug = args.pop("debug")
    logging.basicConfig()
    if debug:
        logger.setLevel(logging.DEBUG)
        # This supposes to plug a logger with name "WHISPER" into Whisper source code (no harm if it's not set)
        logging.getLogger("WHISPER").setLevel(logging.DEBUG)

    output_dir = args.pop("output_dir")
    if output_dir and not os.path.isdir(output_dir):
        os.makedirs(output_dir)

    args["naive_approach"] = args.pop("naive")
    args["remove_punctuation_from_words"] = not args.pop("punctuations_with_words")
    args["compute_word_confidence"] = args.pop("compute_confidence")
    args["trust_whisper_timestamps"] = not args.pop("recompute_all_timestamps")

    for audio_path in audio_files:

        outname = os.path.join(output_dir, os.path.basename(audio_path)) if output_dir else None

        result = transcribe_timestamped(
            model, audio_path,
            temperature=temperature,
            plot_word_alignment=outname if (outname and plot_word_alignment) else plot_word_alignment,
            **args
        )

        if output_dir:

            if "json" in output_format:
                # save JSON
                with open(outname + ".words.json", "w", encoding="utf-8") as js:
                    json.dump(result, js, indent=2, ensure_ascii=False)

            # save TXT
            if "txt" in output_format:
                with open(outname + ".txt", "w", encoding="utf-8") as txt:
                    write_txt(result["segments"], file=txt)

            # save VTT
            if "vtt" in output_format:
                with open(outname + ".vtt", "w", encoding="utf-8") as vtt:
                    write_vtt(remove_keys(result["segments"], "words"), file=vtt)
                with open(outname + ".words.vtt", "w", encoding="utf-8") as vtt:
                    write_vtt(flatten(result["segments"], "words"), file=vtt)

            # save SRT
            if "srt" in output_format:
                with open(outname + ".srt", "w", encoding="utf-8") as srt:
                    write_srt(remove_keys(result["segments"], "words"), file=srt)
                with open(outname + ".words.srt", "w", encoding="utf-8") as srt:
                    write_srt(flatten(result["segments"], "words"), file=srt)

            # save CSV
            if "csv" in output_format:
                with open(outname + ".csv", "w", encoding="utf-8") as csv:
                    write_csv(result["segments"], file=csv)
                with open(outname + ".words.csv", "w", encoding="utf-8") as csv:
                    write_csv(flatten(result["segments"], "words"), file=csv)

            # save TSV
            if "tsv" in output_format:
                with open(outname + ".tsv", "w", encoding="utf-8") as csv:
                    write_tsv(result["segments"], file=csv)
                with open(outname + ".words.tsv", "w", encoding="utf-8") as csv:
                    write_tsv(flatten(result["segments"], "words"), file=csv)

        elif not args["verbose"]:

            json.dump(filtered_keys(result), sys.stdout, indent=2, ensure_ascii=False)


def filtered_keys(result, keys = [
    "text",
    "segments", "words",
    "language",
    "start",
    "end",
    "confidence",
    "language_probs",
]):
    if isinstance(result, dict):
        return {k: (filtered_keys(v, keys) if k not in ["language_probs"] else v) for k, v in result.items() if k in keys}
    if isinstance(result, list):
        return [filtered_keys(v, keys) for v in result]
    if isinstance(result, float):
        return round(result, 2)
    return result


if __name__ == "__main__":
    cli()