Spaces:
Sleeping
Sleeping
import streamlit as st | |
import soundfile as sf | |
import numpy as np | |
from feat import * | |
from tensorflow.keras.models import load_model | |
from sklearn.preprocessing import LabelEncoder | |
import pandas as pd | |
import librosa | |
import numpy as np | |
from pyAudioAnalysis import audioSegmentation as aS | |
import speech_recognition as sr | |
import wave | |
# Label encoder | |
labelencoder = LabelEncoder() | |
# Load the saved model | |
model_path = 'cnn_lstm.keras' | |
model = load_model(model_path) | |
# Label mapping | |
label_mapping = {0: 'angry', | |
1: 'excited', | |
2: 'fear', | |
3: 'happy', | |
4: 'neutral', | |
5: 'sad'} | |
# Set the title of the Streamlit app | |
st.title("Speech Emotion Recognition") | |
# File uploader for audio files | |
audio_file = st.file_uploader("Upload an audio file:", type=["mp3", "wav"]) | |
# Set the interval for segments | |
interval = st.number_input("Set the interval (0.00-15.00 seconds) for emotion detection segments:", | |
min_value=0.00, max_value=15.00, value=3.00, step=0.01) | |
# Button to upload | |
if st.button("Upload"): | |
if audio_file: | |
audio_data, samplerate = sf.read(audio_file) | |
# Convert the audio file to WAV format and save it | |
output_file_path = 'uploaded_audio.wav' | |
sf.write(output_file_path, audio_data, samplerate) | |
st.audio(audio_file) | |
else: | |
st.error("Please upload an audio file.") | |
# Function to process audio and predict emotions | |
def predict_emotions(audio_path, interval): | |
audio_data, samplerate = sf.read(audio_path) | |
duration = len(audio_data) / samplerate | |
emotions = [] | |
for start in np.arange(0, duration, interval): | |
end = start + interval | |
if end > duration: | |
end = duration | |
segment = audio_data[int(start*samplerate):int(end*samplerate)] | |
segment_path = 'segment.wav' | |
sf.write(segment_path, segment, samplerate) | |
feat = features_extractor(segment_path) | |
feat = feat.reshape(1, -1) | |
predictions = model.predict(feat) | |
predicted_label = np.argmax(predictions, axis=1) | |
emotions.append((start, end, label_mapping[predicted_label[0]])) | |
return emotions | |
# Button to predict | |
if st.button("Predict"): | |
if audio_file: | |
print() | |
emotions = predict_emotions('uploaded_audio.wav', interval=interval) | |
# Create a DataFrame to display emotions | |
emotions_df = pd.DataFrame( | |
emotions, columns=["Start", "End", "Emotion"]) | |
st.write(emotions_df) | |
# Save emotions to a log file | |
log_file_path = 'emotion_log.csv' | |
emotions_df.to_csv(log_file_path, index=False) | |
# Extrapolate major emotions | |
major_emotion = emotions_df['Emotion'].mode().values[0] | |
st.write(f"Major emotion: {major_emotion}") | |
st.success(f"Emotion log saved to {log_file_path}") | |
# Add download button for the emotion log file | |
with open(log_file_path, "rb") as file: | |
btn = st.download_button( | |
label="Download Emotion Log", | |
data=file, | |
file_name='emotion_log.csv', | |
mime='text/csv' | |
) | |
x = word_count1('uploaded_audio.wav') | |
y = get_speaking_rate('uploaded_audio.wav') | |
st.write(f'Number of words = {x[0]}') | |
st.write(f'Transcript = {x[1]}') | |
st.write(f'Speaking rate = {y} syllables per second') | |
else: | |
st.error("Please upload an audio file.") | |
# Additional message at the bottom of the page | |
st.write("Thank you for using the app!") | |
file_path = 'path/to/your/audio/file' | |
try: | |
audio, sr = librosa.load(audio_file, sr=None) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |