Spaces:
Sleeping
Sleeping
Rahulk2197
commited on
Commit
•
5d5d275
1
Parent(s):
fac34c9
Update feat.py
Browse files
feat.py
CHANGED
@@ -1,134 +1,134 @@
|
|
1 |
-
|
2 |
-
import librosa
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
def features_extractor(file_name):
|
6 |
-
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
|
7 |
-
|
8 |
-
# Extract MFCC features
|
9 |
-
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=25)
|
10 |
-
mfccs_scaled_features = np.mean(mfccs_features.T, axis=0)
|
11 |
-
|
12 |
-
# Extract Zero Crossing Rate
|
13 |
-
zcr = librosa.feature.zero_crossing_rate(y=audio)
|
14 |
-
zcr_scaled_features = np.mean(zcr.T, axis=0)
|
15 |
-
|
16 |
-
# Extract Chroma Features
|
17 |
-
chroma = librosa.feature.chroma_stft(y=audio, sr=sample_rate)
|
18 |
-
chroma_scaled_features = np.mean(chroma.T, axis=0)
|
19 |
-
|
20 |
-
# Extract Mel Spectrogram Features
|
21 |
-
mel = librosa.feature.melspectrogram(y=audio, sr=sample_rate)
|
22 |
-
mel_scaled_features = np.mean(mel.T, axis=0)
|
23 |
-
|
24 |
-
# Concatenate all features into a single array
|
25 |
-
features = np.hstack((mfccs_scaled_features, zcr_scaled_features, chroma_scaled_features, mel_scaled_features))
|
26 |
-
|
27 |
-
return features
|
28 |
-
|
29 |
-
|
30 |
-
#########################################################################################################################
|
31 |
-
import speech_recognition as sr
|
32 |
-
|
33 |
-
def recognize_speech_from_file(audio_file_path):
|
34 |
-
# Initialize the recognizer
|
35 |
-
recognizer = sr.Recognizer()
|
36 |
-
|
37 |
-
# Load the audio file
|
38 |
-
with sr.AudioFile(audio_file_path) as source:
|
39 |
-
|
40 |
-
audio_data = recognizer.record(source) # Read the entire audio file
|
41 |
-
|
42 |
-
try:
|
43 |
-
# Recognize speech using Google Web Speech API
|
44 |
-
text = recognizer.recognize_google(audio_data)
|
45 |
-
|
46 |
-
return text
|
47 |
-
except sr.RequestError as e:
|
48 |
-
print(f"Could not request results; {e}")
|
49 |
-
except sr.UnknownValueError:
|
50 |
-
print("Could not understand the audio")
|
51 |
-
|
52 |
-
def count_words(text):
|
53 |
-
words = text.split()
|
54 |
-
return len(words)
|
55 |
-
|
56 |
-
def word_count(audio_path):
|
57 |
-
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
58 |
-
if transcript:
|
59 |
-
return [count_words(transcript),transcript]
|
60 |
-
|
61 |
-
########################################################################################################################
|
62 |
-
import speech_recognition as sr
|
63 |
-
import wave
|
64 |
-
|
65 |
-
def recognize_speech_from_file(audio_file_path):
|
66 |
-
recognizer = sr.Recognizer()
|
67 |
-
audio_file = sr.AudioFile(audio_file_path)
|
68 |
-
with audio_file as source:
|
69 |
-
audio = recognizer.record(source)
|
70 |
-
try:
|
71 |
-
transcript = recognizer.recognize_google(audio)
|
72 |
-
return transcript
|
73 |
-
except sr.UnknownValueError:
|
74 |
-
return None
|
75 |
-
except sr.RequestError as e:
|
76 |
-
print(f"Could not request results from Google Speech Recognition service; {e}")
|
77 |
-
return None
|
78 |
-
|
79 |
-
def count_words(text):
|
80 |
-
words = text.split()
|
81 |
-
return len(words)
|
82 |
-
|
83 |
-
def get_audio_duration(audio_file_path):
|
84 |
-
with wave.open(audio_file_path, 'r') as audio_file:
|
85 |
-
frames = audio_file.getnframes()
|
86 |
-
rate = audio_file.getframerate()
|
87 |
-
duration = frames / float(rate)
|
88 |
-
return duration
|
89 |
-
|
90 |
-
def word_count1(audio_path):
|
91 |
-
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
92 |
-
if transcript:
|
93 |
-
duration = get_audio_duration(audio_path)
|
94 |
-
return [count_words(transcript), transcript, duration]
|
95 |
-
else:
|
96 |
-
return [0, None, 0.0]
|
97 |
-
|
98 |
-
word_count('angry_Akash.wav')
|
99 |
-
|
100 |
-
# print(word_count1(r'c:\Users\hp\OneDrive\Desktop\Major Emotions\Mixed\Angry-1-3-1.wav'))
|
101 |
-
# Example usage
|
102 |
-
# audio_path = 'angry_Ansh.wav'
|
103 |
-
# result = word_count(audio_path)
|
104 |
-
# print(result)
|
105 |
-
|
106 |
-
import librosa
|
107 |
-
import numpy as np
|
108 |
-
from pyAudioAnalysis import audioSegmentation as aS
|
109 |
-
|
110 |
-
def get_speaking_rate(file_path):
|
111 |
-
# Load audio file
|
112 |
-
y, sr = librosa.load(file_path, sr=None)
|
113 |
-
|
114 |
-
# Extract speech segments
|
115 |
-
segments = aS.silence_removal(y, sr, 0.020, 0.020, smooth_window=1.0, weight=0.3, plot=False)
|
116 |
-
|
117 |
-
# Total speech duration
|
118 |
-
speech_duration = sum([end - start for start, end in segments])
|
119 |
-
|
120 |
-
# Number of syllables (approximation)
|
121 |
-
num_syllables = len(librosa.effects.split(y, top_db=30))
|
122 |
-
|
123 |
-
# Calculate speaking rate (syllables per second)
|
124 |
-
speaking_rate = num_syllables / speech_duration if speech_duration > 0 else 0
|
125 |
-
|
126 |
-
return speaking_rate
|
127 |
-
|
128 |
-
# Example usage
|
129 |
-
# file_path = 'angry_Ansh.wav'
|
130 |
-
# speaking_rate = get_speaking_rate(file_path)[0]
|
131 |
-
# print(f"Speaking Rate: {speaking_rate:.2f} syllables per second")
|
132 |
-
# print(get_speaking_rate(file_path)[1])
|
133 |
-
# print(get_speaking_rate(file_path)[2])
|
134 |
-
|
|
|
1 |
+
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def features_extractor(file_name):
|
6 |
+
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
|
7 |
+
|
8 |
+
# Extract MFCC features
|
9 |
+
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=25)
|
10 |
+
mfccs_scaled_features = np.mean(mfccs_features.T, axis=0)
|
11 |
+
|
12 |
+
# Extract Zero Crossing Rate
|
13 |
+
zcr = librosa.feature.zero_crossing_rate(y=audio)
|
14 |
+
zcr_scaled_features = np.mean(zcr.T, axis=0)
|
15 |
+
|
16 |
+
# Extract Chroma Features
|
17 |
+
chroma = librosa.feature.chroma_stft(y=audio, sr=sample_rate)
|
18 |
+
chroma_scaled_features = np.mean(chroma.T, axis=0)
|
19 |
+
|
20 |
+
# Extract Mel Spectrogram Features
|
21 |
+
mel = librosa.feature.melspectrogram(y=audio, sr=sample_rate)
|
22 |
+
mel_scaled_features = np.mean(mel.T, axis=0)
|
23 |
+
|
24 |
+
# Concatenate all features into a single array
|
25 |
+
features = np.hstack((mfccs_scaled_features, zcr_scaled_features, chroma_scaled_features, mel_scaled_features))
|
26 |
+
|
27 |
+
return features
|
28 |
+
|
29 |
+
|
30 |
+
#########################################################################################################################
|
31 |
+
import speech_recognition as sr
|
32 |
+
|
33 |
+
def recognize_speech_from_file(audio_file_path):
|
34 |
+
# Initialize the recognizer
|
35 |
+
recognizer = sr.Recognizer()
|
36 |
+
|
37 |
+
# Load the audio file
|
38 |
+
with sr.AudioFile(audio_file_path) as source:
|
39 |
+
|
40 |
+
audio_data = recognizer.record(source) # Read the entire audio file
|
41 |
+
|
42 |
+
try:
|
43 |
+
# Recognize speech using Google Web Speech API
|
44 |
+
text = recognizer.recognize_google(audio_data)
|
45 |
+
|
46 |
+
return text
|
47 |
+
except sr.RequestError as e:
|
48 |
+
print(f"Could not request results; {e}")
|
49 |
+
except sr.UnknownValueError:
|
50 |
+
print("Could not understand the audio")
|
51 |
+
|
52 |
+
def count_words(text):
|
53 |
+
words = text.split()
|
54 |
+
return len(words)
|
55 |
+
|
56 |
+
def word_count(audio_path):
|
57 |
+
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
58 |
+
if transcript:
|
59 |
+
return [count_words(transcript),transcript]
|
60 |
+
|
61 |
+
########################################################################################################################
|
62 |
+
import speech_recognition as sr
|
63 |
+
import wave
|
64 |
+
|
65 |
+
def recognize_speech_from_file(audio_file_path):
|
66 |
+
recognizer = sr.Recognizer()
|
67 |
+
audio_file = sr.AudioFile(audio_file_path)
|
68 |
+
with audio_file as source:
|
69 |
+
audio = recognizer.record(source)
|
70 |
+
try:
|
71 |
+
transcript = recognizer.recognize_google(audio)
|
72 |
+
return transcript
|
73 |
+
except sr.UnknownValueError:
|
74 |
+
return None
|
75 |
+
except sr.RequestError as e:
|
76 |
+
print(f"Could not request results from Google Speech Recognition service; {e}")
|
77 |
+
return None
|
78 |
+
|
79 |
+
def count_words(text):
|
80 |
+
words = text.split()
|
81 |
+
return len(words)
|
82 |
+
|
83 |
+
def get_audio_duration(audio_file_path):
|
84 |
+
with wave.open(audio_file_path, 'r') as audio_file:
|
85 |
+
frames = audio_file.getnframes()
|
86 |
+
rate = audio_file.getframerate()
|
87 |
+
duration = frames / float(rate)
|
88 |
+
return duration
|
89 |
+
|
90 |
+
def word_count1(audio_path):
|
91 |
+
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
92 |
+
if transcript:
|
93 |
+
duration = get_audio_duration(audio_path)
|
94 |
+
return [count_words(transcript), transcript, duration]
|
95 |
+
else:
|
96 |
+
return [0, None, 0.0]
|
97 |
+
|
98 |
+
# word_count('angry_Akash.wav')
|
99 |
+
|
100 |
+
# print(word_count1(r'c:\Users\hp\OneDrive\Desktop\Major Emotions\Mixed\Angry-1-3-1.wav'))
|
101 |
+
# Example usage
|
102 |
+
# audio_path = 'angry_Ansh.wav'
|
103 |
+
# result = word_count(audio_path)
|
104 |
+
# print(result)
|
105 |
+
|
106 |
+
import librosa
|
107 |
+
import numpy as np
|
108 |
+
from pyAudioAnalysis import audioSegmentation as aS
|
109 |
+
|
110 |
+
def get_speaking_rate(file_path):
|
111 |
+
# Load audio file
|
112 |
+
y, sr = librosa.load(file_path, sr=None)
|
113 |
+
|
114 |
+
# Extract speech segments
|
115 |
+
segments = aS.silence_removal(y, sr, 0.020, 0.020, smooth_window=1.0, weight=0.3, plot=False)
|
116 |
+
|
117 |
+
# Total speech duration
|
118 |
+
speech_duration = sum([end - start for start, end in segments])
|
119 |
+
|
120 |
+
# Number of syllables (approximation)
|
121 |
+
num_syllables = len(librosa.effects.split(y, top_db=30))
|
122 |
+
|
123 |
+
# Calculate speaking rate (syllables per second)
|
124 |
+
speaking_rate = num_syllables / speech_duration if speech_duration > 0 else 0
|
125 |
+
|
126 |
+
return speaking_rate
|
127 |
+
|
128 |
+
# Example usage
|
129 |
+
# file_path = 'angry_Ansh.wav'
|
130 |
+
# speaking_rate = get_speaking_rate(file_path)[0]
|
131 |
+
# print(f"Speaking Rate: {speaking_rate:.2f} syllables per second")
|
132 |
+
# print(get_speaking_rate(file_path)[1])
|
133 |
+
# print(get_speaking_rate(file_path)[2])
|
134 |
+
|