Spaces:
Runtime error
Runtime error
File size: 1,904 Bytes
4d5296b d6394b6 005b6c9 4d5296b d6394b6 4d5296b 80ea7a7 4d5296b 005b6c9 4d5296b 6384796 4d5296b c58857c 4d5296b 80ea7a7 4d5296b 1a96bc7 4d5296b 201fa8f 8e9fc47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
#!/usr/bin/env python
import gradio as gr
import PIL.Image
from gradio_client import Client
shap_e_client = Client("hysts/Shap-E")
triposr_client = Client("stabilityai/TripoSR")
def run(image, model_name):
file_path = "temp.png"
image.save(file_path)
print(file_path)
model_name = model_name.lower()
if model_name=='shap-e':
result = shap_e_client.predict(
file_path, # filepath in 'Input image' Image component
0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
1, # float (numeric value between 1 and 20) in 'Guidance scale' Slider component
2, # float (numeric value between 2 and 100) in 'Number of inference steps' Slider component
api_name="/image-to-3d")
output = result
elif model_name=='triposr':
process_result = triposr_client.predict(
file_path, # filepath in 'Input Image' Image component
True, # bool in 'Remove Background' Checkbox component
0.5, # float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component
api_name="/preprocess")
print(type(process_result))
result = triposr_client.predict(
process_result, # filepath in 'Processed Image' Image component
32, # float (numeric value between 32 and 320) in 'Marching Cubes Resolution' Slider component
api_name="/generate")
output = result[1]
return output
with gr.Blocks() as demo:
with gr.Group():
image = gr.Image(label="Input image", show_label=False, type="pil")
model_name = gr.Textbox(label="Model name", show_label=False)
run_button = gr.Button("Run")
result = gr.Model3D(label="Result", show_label=False)
run_button.click(
fn=run,
inputs=[
image,
model_name
],
outputs=result,
api_name="synthesize"
)
demo.launch() |