File size: 1,390 Bytes
4d5296b
 
 
 
 
 
 
1ca0068
4d5296b
 
 
82e1020
 
 
 
 
 
 
 
4d5296b
d6394b6
 
1ca0068
82e1020
 
 
 
 
005b6c9
4d5296b
 
82e1020
 
 
 
4d5296b
 
 
5bf4118
4d5296b
 
1ca0068
80ea7a7
82e1020
 
 
 
 
 
 
8e9fc47
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python

import gradio as gr
import PIL.Image

from gradio_client import Client

lgm_mini_client = Client("dylanebert/LGM-mini")
triposr_client = Client("stabilityai/TripoSR")


import gradio as gr
import os

from gradio_client import Client

lgm_mini_client = Client("dylanebert/LGM-mini")
triposr_client = Client("stabilityai/TripoSR")

def run(image, model_name):
    file_path = "temp.png"
    image.save(file_path)
    if model_name=='lgm-mini':
      result = lgm_mini_client.predict(
      file_path,	# filepath  in 'image' Image component
      api_name="/run"
      )
      output = result
    elif model_name=='triposr':
        
        process_result = triposr_client.predict(
      file_path,	# filepath  in 'Input Image' Image component
      True,	# bool  in 'Remove Background' Checkbox component
      0.85,	# float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component
      api_name="/preprocess")
        
        result = triposr_client.predict(
		process_result,	# filepath  in 'Processed Image' Image component
		256,	# float (numeric value between 32 and 320) in 'Marching Cubes Resolution' Slider component
		api_name="/generate")

        output = result[0]
    return output


demo = gr.Interface(
    fn=run,
    inputs=[gr.Image(type="pil"),gr.Textbox("Model Name")],
    outputs=gr.Model3D(label="3D Model"),
)

demo.launch()