Spaces:
Runtime error
Runtime error
File size: 2,244 Bytes
4d5296b 82e1020 ff13300 82e1020 8a600c4 82e1020 4d5296b d6394b6 8a600c4 1ca0068 82e1020 8a600c4 005b6c9 4d5296b 82e1020 4d5296b 5bf4118 4d5296b 1ca0068 8a600c4 0369fd2 8a600c4 ff13300 8a600c4 a66310f 8a600c4 ff13300 8a600c4 80ea7a7 82e1020 8c2c796 82e1020 c75b82b 82e1020 8e9fc47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#!/usr/bin/env python
import gradio as gr
import PIL.Image
import os
from gradio_client import Client, file
lgm_mini_client = Client("dylanebert/LGM-mini")
triposr_client = Client("stabilityai/TripoSR")
crm_client = Client("Zhengyi/CRM")
def run(image, model_name):
file_path = "temp.png"
image.save(file_path)
if model_name=='lgm-mini':
result = lgm_mini_client.predict(
file_path, # filepath in 'image' Image component
api_name="/run"
)
output = result
elif model_name=='triposr':
process_result = triposr_client.predict(
file_path, # filepath in 'Input Image' Image component
True, # bool in 'Remove Background' Checkbox component
0.85, # float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component
api_name="/preprocess")
result = triposr_client.predict(
process_result, # filepath in 'Processed Image' Image component
256, # float (numeric value between 32 and 320) in 'Marching Cubes Resolution' Slider component
api_name="/generate")
output = result[0]
elif model_name=='crm':
preprocess_result = crm_client.predict(
file(file_path), # filepath in 'Image input' Image component
"Auto Remove background", # Literal['Alpha as mask', 'Auto Remove background'] in 'backgroud choice' Radio component
1, # float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component
"#7F7F7F", # str in 'Background Color' Colorpicker component
api_name="/preprocess_image"
)
result = crm_client.predict(
file(preprocess_result), # filepath in 'Processed Image' Image component
1234, # float in 'seed' Number component
5.5, # float in 'guidance_scale' Number component
30, # float in 'sample steps' Number component
api_name="/gen_image"
)
output = result[2]
return output
demo = gr.Interface(
fn=run,
inputs=[gr.Image(type="pil"),gr.Textbox(label="Model Name")],
outputs=gr.Model3D(label="3D Model"),
api_name="synthesize",
description="Router for the [3D Arena space](https://huggingface.co/spaces/RamAnanth1/3D-Arena) that does most of the generation"
)
demo.launch() |