#!/usr/bin/env python import gradio as gr import PIL.Image from gradio_client import Client lgm_mini_client = Client("dylanebert/LGM-mini") triposr_client = Client("stabilityai/TripoSR") import gradio as gr import os from gradio_client import Client lgm_mini_client = Client("dylanebert/LGM-mini") triposr_client = Client("stabilityai/TripoSR") def run(image, model_name): file_path = "temp.png" image.save(file_path) if model_name=='lgm-mini': result = lgm_mini_client.predict( file_path, # filepath in 'image' Image component api_name="/run" ) output = result elif model_name=='triposr': process_result = triposr_client.predict( file_path, # filepath in 'Input Image' Image component True, # bool in 'Remove Background' Checkbox component 0.85, # float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component api_name="/preprocess") result = triposr_client.predict( process_result, # filepath in 'Processed Image' Image component 256, # float (numeric value between 32 and 320) in 'Marching Cubes Resolution' Slider component api_name="/generate") output = result[0] return output demo = gr.Interface( fn=run, inputs=[gr.Image(type="pil"),gr.Textbox("Model Name")], outputs=gr.Model3D(label="3D Model"), ) demo.launch()