File size: 6,333 Bytes
7a5c6a0
 
 
 
 
 
4be7ef1
 
 
 
7a5c6a0
4be7ef1
 
 
7a5c6a0
a5994ff
4be7ef1
 
 
 
 
 
fdead57
4be7ef1
 
 
fdead57
4be7ef1
a5994ff
4be7ef1
 
1287f22
4be7ef1
 
 
 
 
 
 
 
1287f22
4be7ef1
 
 
1287f22
4be7ef1
 
1287f22
6585503
4be7ef1
eebd0b7
4be7ef1
 
 
 
 
 
 
 
 
 
 
 
a5994ff
4be7ef1
 
48a96cb
4be7ef1
c71f561
 
4be7ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07326d
8b2a350
7a5c6a0
c5a40b1
487f89b
6585503
c5a40b1
7a5c6a0
c5a40b1
c6b395b
 
4c5854e
c6b395b
 
a312aeb
7a5c6a0
 
03fc7e7
d07326d
7a5c6a0
 
d07326d
d4f714d
7a5c6a0
 
d4f714d
7a5c6a0
cc910da
fdead57
 
 
4be7ef1
fdead57
 
02fa9c7
4be7ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
fdead57
4be7ef1
4645102
 
 
 
4be7ef1
 
 
 
 
 
 
 
 
 
cc910da
40c8fa0
cc910da
29e7450
b3ba9f7
7a5c6a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import cv2
import einops
import gradio as gr
import numpy as np
import torch

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from PIL import Image
from controlnet_aux import OpenposeDetector

# Constants
low_threshold = 100
high_threshold = 200


# Models
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe_canny = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16
)
pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config)

# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe_canny.enable_model_cpu_offload()

pipe_canny.enable_xformers_memory_efficient_attention()

# Generator seed,
generator = torch.manual_seed(0)

pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet_pose = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
pipe_pose = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet_pose, safety_checker=None, torch_dtype=torch.float16
)
pipe_pose.scheduler = UniPCMultistepScheduler.from_config(pipe_pose.scheduler.config)

# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe_pose.enable_model_cpu_offload()

# xformers
pipe_pose.enable_xformers_memory_efficient_attention()


def get_canny_filter(image):
    
    if not isinstance(image, np.ndarray):
        image = np.array(image) 
        
    image = cv2.Canny(image, low_threshold, high_threshold)
    image = image[:
, :, None]
    image = np.concatenate([image, image, image], axis=2)
    canny_image = Image.fromarray(image)
    return canny_image

def get_pose(image):
    return pose_model(image) 
    
def process(input_image, prompt, input_control):
    # TODO: Add other control tasks
    if input_control == "Pose":
        return process_pose(input_image, prompt)
    else:    
        return process_canny(input_image, prompt)

def process_canny(input_image, prompt):
    canny_image = get_canny_filter(input_image)
    output = pipe_canny(
        prompt,
        canny_image,
        generator=generator,
        num_images_per_prompt=1,
        num_inference_steps=20,
    )
    return [canny_image,output.images[0]]


def process_pose(input_image, prompt):
    pose_image = get_pose(input_image)
    output = pipe_pose(
        prompt,
        pose_image,
        generator=generator,
        num_images_per_prompt=1,
        num_inference_steps=20,
    )
    return [pose_image,output.images[0]]
    
    
block = gr.Blocks().queue()
control_task_list = [
    "Canny Edge Map",
    "Pose"
]
with block:
    gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. 
              </p>
              ''')
    gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints.  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            
            
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, input_control]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
    examples_list = [
                [
            "bird.png", 
            "bird",
            "Canny Edge Map"
            
        ],
        
        #         [
        #     "turtle.png", 
        #     "turtle",
        #     "Scribble",
        #     "best quality, extremely detailed",
        #     'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
        #      1, 
        #     512,
        #     20, 
        #     9.0, 
        #     123490213,
        #     0.0,
        #     100,
        #     200
            
        # ],
                  [
            "pose1.png", 
           "Chef in the Kitchen",
           "Pose",
        #     "best quality, extremely detailed",
        #     'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
        #      1, 
        #     512,
        #     20, 
        #     9.0, 
        #     123490213,
        #     0.0,
        #     100,
        #     200
            
         ]
    ]
    examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control], outputs = [result_gallery], cache_examples = True, fn = process)
    gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)")  

block.launch(debug = True)