import gradio as gr import os from PIL import Image, ImageOps import matplotlib.pyplot as plt import numpy as np import torch import requests from tqdm import tqdm from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline import torchvision.transforms as T from utils import preprocess,prepare_mask_and_masked_image, recover_image to_pil = T.ToPILImage() model_id_or_path = "runwayml/stable-diffusion-v1-5" # model_id_or_path = "CompVis/stable-diffusion-v1-4" # model_id_or_path = "CompVis/stable-diffusion-v1-3" # model_id_or_path = "CompVis/stable-diffusion-v1-2" # model_id_or_path = "CompVis/stable-diffusion-v1-1" pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained( model_id_or_path, revision="fp16", torch_dtype=torch.float16, ) pipe_img2img = pipe_img2img.to("cuda") pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="fp16", torch_dtype=torch.float16, ) pipe_inpaint = pipe_inpaint.to("cuda") def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None): X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda() pbar = tqdm(range(iters)) for i in pbar: actual_step_size = step_size - (step_size - step_size / 100) / iters * i X_adv.requires_grad_(True) loss = (model(X_adv).latent_dist.mean).norm() pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}") grad, = torch.autograd.grad(loss, [X_adv]) X_adv = X_adv - grad.detach().sign() * actual_step_size X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps) X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max) X_adv.grad = None if mask is not None: X_adv.data *= mask return X_adv def pgd_inpaint(X, target, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None): X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda() pbar = tqdm(range(iters)) for i in pbar: actual_step_size = step_size - (step_size - step_size / 100) / iters * i X_adv.requires_grad_(True) loss = (model(X_adv).latent_dist.mean - target).norm() pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}") grad, = torch.autograd.grad(loss, [X_adv]) X_adv = X_adv - grad.detach().sign() * actual_step_size X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps) X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max) X_adv.grad = None if mask is not None: X_adv.data *= mask return X_adv def process_image_img2img(raw_image,prompt, scale, num_steps, seed): resize = T.transforms.Resize(512) center_crop = T.transforms.CenterCrop(512) init_image = center_crop(resize(raw_image)) with torch.autocast('cuda'): X = preprocess(init_image).half().cuda() adv_X = pgd(X, model=pipe_img2img.vae.encode, clamp_min=-1, clamp_max=1, eps=0.06, # The higher, the less imperceptible the attack is step_size=0.02, # Set smaller than eps iters=100, # The higher, the stronger your attack will be ) # convert pixels back to [0,1] range adv_X = (adv_X / 2 + 0.5).clamp(0, 1) adv_image = to_pil(adv_X[0]).convert("RGB") # a good seed (uncomment the line below to generate new images) SEED = seed# Default is 9222 # SEED = np.random.randint(low=0, high=10000) # Play with these for improving generated image quality STRENGTH = 0.5 GUIDANCE = scale # Default is 7.5 NUM_STEPS = num_steps # Default is 50 with torch.autocast('cuda'): torch.manual_seed(SEED) image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] torch.manual_seed(SEED) image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")] def process_image_inpaint(raw_image,mask, prompt,scale, num_steps, seed): init_image = raw_image.convert('RGB').resize((512,512)) mask_image = mask.convert('RGB') mask_image = ImageOps.invert(mask_image).resize((512,512)) # Attack using embedding of random image from internet target_url = "https://bostonglobe-prod.cdn.arcpublishing.com/resizer/2-ZvyQ3aRNl_VNo7ja51BM5-Kpk=/960x0/cloudfront-us-east-1.images.arcpublishing.com/bostonglobe/CZOXE32LQQX5UNAB42AOA3SUY4.jpg" response = requests.get(target_url) target_image = Image.open(BytesIO(response.content)).convert("RGB") target_image = target_image.resize((512, 512)) with torch.autocast('cuda'): mask, X = prepare_mask_and_masked_image(init_image, mask_image) X = X.half().cuda() mask = mask.half().cuda() # Here we attack towards the embedding of a random target image. You can also simply attack towards an embedding of zeros! target = pipe_inpaint.vae.encode(preprocess(target_image).half().cuda()).latent_dist.mean adv_X = pgd_inpaint(X, target = target, model=pipe_inpaint.vae.encode, criterion=torch.nn.MSELoss(), clamp_min=-1, clamp_max=1, eps=0.06, step_size=0.01, iters=1000, mask=1-mask ) adv_X = (adv_X / 2 + 0.5).clamp(0, 1) adv_image = to_pil(adv_X[0]).convert("RGB") adv_image = recover_image(adv_image, init_image, mask_image, background=True) # A good seed SEED = seed #Default is 9209 # Uncomment the below to generated other images # SEED = np.random.randint(low=0, high=100000) torch.manual_seed(SEED) print(SEED) #strength = 0.7 guidance_scale = scale# Default is 7.5 num_inference_steps = num_steps # Default is 100 image_nat = pipe_inpaint(prompt=prompt, image=init_image, mask_image=mask_image, eta=1, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale #strength=strength ).images[0] image_nat = recover_image(image_nat, init_image, mask_image) torch.manual_seed(SEED) image_adv = pipe_inpaint(prompt=prompt, image=adv_image, mask_image=mask_image, eta=1, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale #strength=strength ).images[0] image_adv = recover_image(image_adv, init_image, mask_image) return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")] examples_list = [["dog.png", "dog under heavy rain and muddy ground real", 7.5, 50, 9222]] with gr.Blocks() as demo: gr.Markdown(""" ## Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing """) gr.HTML('''
This is an unofficial demo for Photoguard, which is an approach to safeguarding images against manipulation by ML-powered photo-editing models such as stable diffusion through immunization of images. The demo is based on the Github implementation provided by the authors.
''') gr.HTML(''' ''') gr.HTML('''A malevolent actor might download photos of people posted online and edit them maliciously using an off-the-shelf diffusion model. The adversary describes via a textual prompt the desired changes and then uses a diffusion model to generate a realistic image that matches the prompt (similar to the top row in the image). By immunizing the original image before the adversary can access it, we disrupt their ability to successfully perform such edits forcing them to generate unrealistic images (similar to the bottom row in the image). For a more detailed explanation, please read the accompanying Paper or Blogpost ''') with gr.Column(): with gr.Tab("Simple Image to Image"): input_image_img2img = gr.Image(type="pil", label = "Source Image") input_prompt_img2img = gr.Textbox(label="Prompt") run_btn_img2img = gr.Button('Run') with gr.Tab("Simple Inpainting"): input_image_inpaint = gr.Image(type="pil", label = "Source Image") mask_image_inpaint = gr.Image(type="pil", label = "Mask") input_prompt_inpaint = gr.Textbox(label="Prompt") run_btn_inpaint = gr.Button('Run') with gr.Accordion("Advanced options", open=False): scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) num_steps = gr.Slider(label="Number of Inference Steps", minimum=5, maximum=125, value=100, step=5) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) with gr.Row(): result_gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img, scale, num_steps, seed], outputs = [result_gallery]) examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img,scale, num_steps, seed], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img) run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint,scale, num_steps, seed], outputs = [result_gallery]) demo.launch(debug=True)