Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from transformers import logging | |
from transformers import CLIPTokenizer, CLIPTextModel | |
logging.set_verbosity_error() | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |