RamAnanth1's picture
Upload 26 files
ba984b2
raw
history blame
68 kB
import os
import time
import random
import itertools
from functools import partial
from contextlib import contextmanager
import numpy as np
from tqdm import tqdm
from einops import rearrange, repeat
import torch
import torch.nn as nn
import pytorch_lightning as pl
from torchvision.utils import make_grid
from torch.optim.lr_scheduler import LambdaLR
from pytorch_lightning.utilities import rank_zero_only
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
from lvdm.models.modules.lora import inject_trainable_lora
from lvdm.samplers.ddim import DDIMSampler
from lvdm.utils.common_utils import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config, check_istarget
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
def split_video_to_clips(video, clip_length, drop_left=True):
video_length = video.shape[2]
shape = video.shape
if video_length % clip_length != 0 and drop_left:
video = video[:, :, :video_length // clip_length * clip_length, :, :]
print(f'[split_video_to_clips] Drop frames from {shape} to {video.shape}')
nclips = video_length // clip_length
clips = rearrange(video, 'b c (nc cl) h w -> (b nc) c cl h w', cl=clip_length, nc=nclips)
return clips
def merge_clips_to_videos(clips, bs):
nclips = clips.shape[0] // bs
video = rearrange(clips, '(b nc) c t h w -> b c (nc t) h w', nc=nclips)
return video
class DDPM(pl.LightningModule):
# classic DDPM with Gaussian diffusion, in pixel space
def __init__(self,
unet_config,
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor="val/loss",
use_ema=True,
first_stage_key="image",
image_size=256,
video_length=None,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
v_posterior=0.,
l_simple_weight=1.,
conditioning_key=None,
parameterization="eps",
scheduler_config=None,
learn_logvar=False,
logvar_init=0.,
*args, **kwargs
):
super().__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
if isinstance(self.image_size, int):
self.image_size = [self.image_size, self.image_size]
self.channels = channels
self.model = DiffusionWrapper(unet_config, conditioning_key)
self.conditioning_key = conditioning_key # also register conditioning_key in diffusion
self.temporal_length = video_length if video_length is not None else unet_config.params.temporal_length
count_params(self.model, verbose=True)
self.use_ema = use_ema
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
else:
raise NotImplementedError("mu not supported")
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik) or (ik.startswith('**') and ik.split('**')[-1] in k):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
channels = self.channels
video_length = self.total_length
size = (batch_size, channels, video_length, *self.image_size)
return self.p_sample_loop(size,
return_intermediates=return_intermediates)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_loss(self, pred, target, mean=True, mask=None):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
if mask is not None:
assert(mean is False)
assert(loss.shape[2:] == mask.shape[2:]) #thw need be the same
loss = loss * mask
return loss
def p_losses(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == "eps":
target = noise
elif self.parameterization == "x0":
target = x_start
else:
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3, 4])
log_prefix = 'train' if self.training else 'val'
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f'{log_prefix}/loss': loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
x = batch[k]
x = x.to(memory_format=torch.contiguous_format).float()
return x
def shared_step(self, batch):
x = self.get_input(batch, self.first_stage_key)
loss, loss_dict = self(x)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
self.log_dict(loss_dict, prog_bar=True,
logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step,
prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.use_scheduler:
lr = self.optimizers().param_groups[0]['lr']
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.log_time:
total_train_time = (time.time() - self.start_time) / (3600*24)
avg_step_time = (time.time() - self.start_time) / (self.global_step + 1)
left_time_2w_step = (20000-self.global_step -1) * avg_step_time / (3600*24)
left_time_5w_step = (50000-self.global_step -1) * avg_step_time / (3600*24)
with open(self.logger_path, 'w') as f:
print(f'total_train_time = {total_train_time:.1f} days \n\
total_train_step = {self.global_step + 1} steps \n\
left_time_2w_step = {left_time_2w_step:.1f} days \n\
left_time_5w_step = {left_time_5w_step:.1f} days', file=f)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
# _, loss_dict_no_ema = self.shared_step_validate(batch)
# with self.ema_scope():
# _, loss_dict_ema = self.shared_step_validate(batch)
# loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
if (self.global_step) % self.val_fvd_interval == 0 and self.global_step != 0:
print(f'sample for fvd...')
self.log_images_kwargs = {
'inpaint': False,
'plot_diffusion_rows': False,
'plot_progressive_rows': False,
'ddim_steps': 50,
'unconditional_guidance_scale': 15.0,
}
torch.cuda.empty_cache()
logs = self.log_images(batch, **self.log_images_kwargs)
self.log("batch_idx", batch_idx,
prog_bar=True, on_step=True, on_epoch=False)
return {'real': logs['inputs'], 'fake': logs['samples'], 'conditioning_txt_img': logs['conditioning_txt_img']}
def get_condition_validate(self, prompt):
""" text embd
"""
if isinstance(prompt, str):
prompt = [prompt]
c = self.get_learned_conditioning(prompt)
bs = c.shape[0]
return c
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def training_epoch_end(self, outputs):
if (self.current_epoch == 0) or self.resume_new_epoch == 0:
self.epoch_start_time = time.time()
self.current_epoch_time = 0
self.total_time = 0
self.epoch_time_avg = 0
else:
self.current_epoch_time = time.time() - self.epoch_start_time
self.epoch_start_time = time.time()
self.total_time += self.current_epoch_time
self.epoch_time_avg = self.total_time / self.current_epoch
self.resume_new_epoch += 1
epoch_avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
self.log('train/epoch/loss', epoch_avg_loss, logger=True, on_epoch=True)
self.log('train/epoch/idx', self.current_epoch, logger=True, on_epoch=True)
self.log('train/epoch/time', self.current_epoch_time, logger=True, on_epoch=True)
self.log('train/epoch/time_avg', self.epoch_time_avg, logger=True, on_epoch=True)
self.log('train/epoch/time_avg_min', self.epoch_time_avg / 60, logger=True, on_epoch=True)
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, 'n b c t h w -> b n c t h w')
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None,
plot_diffusion_rows=True, plot_denoise_rows=True, **kwargs):
""" log images for DDPM """
log = dict()
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log["inputs"] = x
if 'fps' in batch:
log['fps'] = batch['fps']
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
if sample:
# get denoise row
with self.ema_scope("Plotting"):
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
log["samples"] = samples
if plot_denoise_rows:
log["denoise_row"] = self._get_rows_from_list(denoise_row)
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = params + [self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
class LatentDiffusion(DDPM):
"""main class"""
def __init__(self,
first_stage_config,
cond_stage_config,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
encoder_type="2d",
shift_factor=0.0,
split_clips=True,
downfactor_t=None,
clip_length=None,
only_model=False,
lora_args={},
*args, **kwargs):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
if cond_stage_config == '__is_unconditional__':
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.cond_stage_config = cond_stage_config
self.first_stage_config = first_stage_config
self.encoder_type = encoder_type
assert(encoder_type in ["2d", "3d"])
self.restarted_from_ckpt = False
self.shift_factor = shift_factor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
self.restarted_from_ckpt = True
self.split_clips = split_clips
self.downfactor_t = downfactor_t
self.clip_length = clip_length
# lora related args
self.inject_unet = getattr(lora_args, "inject_unet", False)
self.inject_clip = getattr(lora_args, "inject_clip", False)
self.inject_unet_key_word = getattr(lora_args, "inject_unet_key_word", None)
self.inject_clip_key_word = getattr(lora_args, "inject_clip_key_word", None)
self.lora_rank = getattr(lora_args, "lora_rank", 4)
def make_cond_schedule(self, ):
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
self.cond_ids[:self.num_timesteps_cond] = ids
def inject_lora(self, lora_scale=1.0):
if self.inject_unet:
self.lora_require_grad_params, self.lora_names = inject_trainable_lora(self.model, self.inject_unet_key_word,
r=self.lora_rank,
scale=lora_scale
)
if self.inject_clip:
self.lora_require_grad_params_clip, self.lora_names_clip = inject_trainable_lora(self.cond_stage_model, self.inject_clip_key_word,
r=self.lora_rank,
scale=lora_scale
)
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
# only for very first batch, reset the self.scale_factor
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
print(f"std={z.flatten().std()}")
def register_schedule(self,
given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if config is None:
self.cond_stage_model = None
return
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
print(f"Training {self.__class__.__name__} as an unconditional model.")
self.cond_stage_model = None
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != '__is_first_stage__'
assert config != '__is_unconditional__'
model = instantiate_from_config(config)
self.cond_stage_model = model
def get_first_stage_encoding(self, encoder_posterior, noise=None):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample(noise=noise)
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
z = self.scale_factor * (z + self.shift_factor)
return z
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
@torch.no_grad()
def get_condition(self, batch, x, bs, force_c_encode, k, cond_key, is_imgs=False):
is_conditional = self.model.conditioning_key is not None # crossattn
if is_conditional:
if cond_key is None:
cond_key = self.cond_stage_key
# get condition batch of different condition type
if cond_key != self.first_stage_key:
assert(cond_key in ["caption", "txt"])
xc = batch[cond_key]
else:
xc = x
# if static video
if self.static_video:
xc_ = [c + ' (static)' for c in xc]
xc = xc_
# get learned condition.
# can directly skip it: c = xc
if self.cond_stage_config is not None and (not self.cond_stage_trainable or force_c_encode):
if isinstance(xc, torch.Tensor):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
c = xc
if self.classfier_free_guidance:
if cond_key in ['caption', "txt"] and self.uncond_type == 'empty_seq':
for i, ci in enumerate(c):
if random.random() < self.prob:
c[i] = ""
elif cond_key == 'class_label' and self.uncond_type == 'zero_embed':
pass
elif cond_key == 'class_label' and self.uncond_type == 'learned_embed':
import pdb;pdb.set_trace()
for i, ci in enumerate(c):
if random.random() < self.prob:
c[i]['class_label'] = self.n_classes
else:
raise NotImplementedError
if self.zero_cond_embed:
import pdb;pdb.set_trace()
c = torch.zeros_like(c)
# process c
if bs is not None:
if (is_imgs and not self.static_video):
c = c[:bs*self.temporal_length] # each random img (in T axis) has a corresponding prompt
else:
c = c[:bs]
else:
c = None
xc = None
return c, xc
@torch.no_grad()
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
cond_key=None, return_original_cond=False, bs=None, mask_temporal=False):
""" Get input in LDM
"""
# get input imgaes
x = super().get_input(batch, k) # k = first_stage_key=image
is_imgs = True if k == 'jpg' else False
if is_imgs:
if self.static_video:
# repeat single img to a static video
x = x.unsqueeze(2) # bchw -> bc1hw
x = x.repeat(1,1,self.temporal_length,1,1) # bc1hw -> bcthw
else:
# rearrange to videos with T random img
bs_load = x.shape[0] // self.temporal_length
x = x[:bs_load*self.temporal_length, ...]
x = rearrange(x, '(b t) c h w -> b c t h w', t=self.temporal_length, b=bs_load)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
x_ori = x
b, _, t, h, w = x.shape
# encode video frames x to z via a 2D encoder
x = rearrange(x, 'b c t h w -> (b t) c h w')
encoder_posterior = self.encode_first_stage(x, mask_temporal)
z = self.get_first_stage_encoding(encoder_posterior).detach()
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
c, xc = self.get_condition(batch, x, bs, force_c_encode, k, cond_key, is_imgs)
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z, mask_temporal=mask_temporal)
out.extend([x_ori, xrec])
if return_original_cond:
if isinstance(xc, torch.Tensor) and xc.dim() == 4:
xc = rearrange(xc, '(b t) c h w -> b c t h w', b=b, t=t)
out.append(xc)
return out
@torch.no_grad()
def decode(self, z, **kwargs,):
z = 1. / self.scale_factor * z - self.shift_factor
results = self.first_stage_model.decode(z,**kwargs)
return results
@torch.no_grad()
def decode_first_stage_2DAE(self, z, decode_bs=16, return_cpu=True, **kwargs):
b, _, t, _, _ = z.shape
z = rearrange(z, 'b c t h w -> (b t) c h w')
if decode_bs is None:
results = self.decode(z, **kwargs)
else:
z = torch.split(z, decode_bs, dim=0)
if return_cpu:
results = torch.cat([self.decode(z_, **kwargs).cpu() for z_ in z], dim=0)
else:
results = torch.cat([self.decode(z_, **kwargs) for z_ in z], dim=0)
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t).contiguous()
return results
@torch.no_grad()
def decode_first_stage(self, z, decode_bs=16, return_cpu=True, **kwargs):
assert(self.encoder_type == "2d" and z.dim() == 5)
return self.decode_first_stage_2DAE(z, decode_bs=decode_bs, return_cpu=return_cpu, **kwargs)
@torch.no_grad()
def encode_first_stage_2DAE(self, x, encode_bs=16):
b, _, t, _, _ = x.shape
x = rearrange(x, 'b c t h w -> (b t) c h w')
if encode_bs is None:
results = self.first_stage_model.encode(x)
else:
x = torch.split(x, encode_bs, dim=0)
zs = []
for x_ in x:
encoder_posterior = self.first_stage_model.encode(x_)
z = self.get_first_stage_encoding(encoder_posterior).detach()
zs.append(z)
results = torch.cat(zs, dim=0)
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
return results
@torch.no_grad()
def encode_first_stage(self, x):
assert(self.encoder_type == "2d" and x.dim() == 5)
b, _, t, _, _ = x.shape
x = rearrange(x, 'b c t h w -> (b t) c h w')
results = self.first_stage_model.encode(x)
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
return results
def shared_step(self, batch, **kwargs):
""" shared step of LDM.
If learned condition, c is raw condition (e.g. text)
Encoding condition is performed in below forward function.
"""
x, c = self.get_input(batch, self.first_stage_key)
loss = self(x, c)
return loss
def forward(self, x, c, *args, **kwargs):
start_t = getattr(self, "start_t", 0)
end_t = getattr(self, "end_t", self.num_timesteps)
t = torch.randint(start_t, end_t, (x.shape[0],), device=self.device).long()
if self.model.conditioning_key is not None:
assert c is not None
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
if self.classfier_free_guidance and self.uncond_type == 'zero_embed':
for i, ci in enumerate(c):
if random.random() < self.prob:
c[i] = torch.zeros_like(c[i])
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
def apply_model(self, x_noisy, t, cond, return_ids=False, **kwargs):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
cond = {key: cond}
x_recon = self.model(x_noisy, t, **cond, **kwargs)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
return mean_flat(kl_prior) / np.log(2.0)
def p_losses(self, x_start, cond, t, noise=None, skip_qsample=False, x_noisy=None, cond_mask=None, **kwargs,):
if not skip_qsample:
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
else:
assert(x_noisy is not None)
assert(noise is not None)
model_output = self.apply_model(x_noisy, t, cond, **kwargs)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
if self.logvar.device != self.device:
self.logvar = self.logvar.to(self.device)
logvar_t = self.logvar[t]
loss = loss_simple / torch.exp(logvar_t) + logvar_t
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
return_x0=False, score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,
uc_type=None,):
t_in = t
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
else:
# with unconditional condition
if isinstance(c, torch.Tensor):
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
c_in = torch.cat([unconditional_conditioning, c])
model_out_uncond, model_out = self.apply_model(x_in, t_in, c_in, return_ids=return_codebook_ids).chunk(2)
elif isinstance(c, dict):
model_out = self.apply_model(x, t, c, return_ids=return_codebook_ids)
model_out_uncond = self.apply_model(x, t, unconditional_conditioning, return_ids=return_codebook_ids)
else:
raise NotImplementedError
if uc_type is None:
model_out = model_out_uncond + unconditional_guidance_scale * (model_out - model_out_uncond)
else:
if uc_type == 'cfg_original':
model_out = model_out + unconditional_guidance_scale * (model_out - model_out_uncond)
elif uc_type == 'cfg_ours':
model_out = model_out + unconditional_guidance_scale * (model_out_uncond - model_out)
else:
raise NotImplementedError
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1., 1.)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,
uc_type=None,):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
uc_type=uc_type,)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
if return_codebook_ids:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
if return_x0:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
total=timesteps) if verbose else reversed(
range(0, timesteps))
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised, return_x0=True,
temperature=temperature[i], noise_dropout=noise_dropout,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback: callback(i)
if img_callback: img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(self, cond, shape, return_intermediates=False,
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, start_T=None,
log_every_t=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,
uc_type=None,):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
# sample an initial noise
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
range(0, timesteps))
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
uc_type=uc_type)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
verbose=True, timesteps=None, quantize_denoised=False,
mask=None, x0=None, shape=None, **kwargs):
if shape is None:
shape = (batch_size, self.channels, self.total_length, *self.image_size)
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
return self.p_sample_loop(cond,
shape,
return_intermediates=return_intermediates, x_T=x_T,
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
mask=mask, x0=x0,)
@torch.no_grad()
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
if ddim:
ddim_sampler = DDIMSampler(self)
shape = (self.channels, self.total_length, *self.image_size)
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
shape,cond,verbose=False, **kwargs)
else:
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
return_intermediates=True, **kwargs)
return samples, intermediates
@torch.no_grad()
def log_condition(self, log, batch, xc, x, c, cond_stage_key=None):
"""
xc: oringinal condition before enconding.
c: condition after encoding.
"""
if x.dim() == 5:
txt_img_shape = [x.shape[3], x.shape[4]]
elif x.dim() == 4:
txt_img_shape = [x.shape[2], x.shape[3]]
else:
raise ValueError
if self.model.conditioning_key is not None: #concat-time-mask
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif cond_stage_key in ["caption", "txt"]:
log["conditioning_txt_img"] = log_txt_as_img(txt_img_shape, batch[cond_stage_key], size=x.shape[3]//25)
log["conditioning_txt"] = batch[cond_stage_key]
elif cond_stage_key == 'class_label':
try:
xc = log_txt_as_img(txt_img_shape, batch["human_label"], size=x.shape[3]//25)
except:
xc = log_txt_as_img(txt_img_shape, batch["class_name"], size=x.shape[3]//25)
log['conditioning'] = xc
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if isinstance(c, dict) and 'mask' in c:
log['mask'] =self.mask_to_rgb(c['mask'])
return log
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., unconditional_guidance_scale=1.0,
first_stage_key2=None, cond_key2=None,
c=None,
**kwargs):
""" log images for LatentDiffusion """
use_ddim = ddim_steps is not None
is_imgs = first_stage_key2 is not None
if is_imgs:
assert(cond_key2 is not None)
log = dict()
# get input
z, c, x, xrec, xc = self.get_input(batch,
k=self.first_stage_key if first_stage_key2 is None else first_stage_key2,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N,
cond_key=cond_key2 if cond_key2 is not None else None,
)
N_ori = N
N = min(z.shape[0], N)
n_row = min(x.shape[0], n_row)
if unconditional_guidance_scale != 1.0:
prompts = N * self.temporal_length * [""] if (is_imgs and not self.static_video) else N * [""]
uc = self.get_condition_validate(prompts)
else:
uc = None
log["inputs"] = x
log["reconstruction"] = xrec
log = self.log_condition(log, batch, xc, x, c,
cond_stage_key=self.cond_stage_key if cond_key2 is None else cond_key2
)
if sample:
with self.ema_scope("Plotting"):
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
ddim_steps=ddim_steps,eta=ddim_eta,
temporal_length=self.video_length,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc, **kwargs,
)
# decode samples
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
return log
def configure_optimizers(self):
""" configure_optimizers for LatentDiffusion """
lr = self.learning_rate
# --------------------------------------------------------------------------------
# set parameters
if hasattr(self, "only_optimize_empty_parameters") and self.only_optimize_empty_parameters:
print("[INFO] Optimize only empty parameters!")
assert(hasattr(self, "empty_paras"))
params = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
elif hasattr(self, "only_optimize_pretrained_parameters") and self.only_optimize_pretrained_parameters:
print("[INFO] Optimize only pretrained parameters!")
assert(hasattr(self, "empty_paras"))
params = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
assert(len(params) != 0)
elif getattr(self, "optimize_empty_and_spatialattn", False):
print("[INFO] Optimize empty parameters + spatial transformer!")
assert(hasattr(self, "empty_paras"))
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
SA_list = [".attn1.", ".attn2.", ".ff.", ".norm1.", ".norm2.", ".norm3."]
SA_params = [p for n, p in self.model.named_parameters() if check_istarget(n, SA_list)]
if getattr(self, "spatial_lr_decay", False):
params = [
{"params": empty_paras},
{"params": SA_params, "lr": lr * self.spatial_lr_decay}
]
else:
params = empty_paras + SA_params
else:
# optimize whole denoiser
if hasattr(self, "spatial_lr_decay") and self.spatial_lr_decay:
print("[INFO] Optimize the whole net with different lr!")
print(f"[INFO] {lr} for empty paras, {lr * self.spatial_lr_decay} for pretrained paras!")
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
# assert(len(empty_paras) == len(self.empty_paras)) # self.empty_paras:cond_stage_model.embedding.weight not in diffusion model params
pretrained_paras = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
params = [
{"params": empty_paras},
{"params": pretrained_paras, "lr": lr * self.spatial_lr_decay}
]
print(f"[INFO] Empty paras: {len(empty_paras)}, Pretrained paras: {len(pretrained_paras)}")
else:
params = list(self.model.parameters())
if hasattr(self, "generator_trainable") and not self.generator_trainable:
# fix unet denoiser
params = list()
if self.inject_unet:
params = itertools.chain(*self.lora_require_grad_params)
if self.inject_clip:
if self.inject_unet:
params = list(params)+list(itertools.chain(*self.lora_require_grad_params_clip))
else:
params = itertools.chain(*self.lora_require_grad_params_clip)
# append paras
# ------------------------------------------------------------------
def add_cond_model(cond_model, params):
if isinstance(params[0], dict):
# parameter groups
params.append({"params": list(cond_model.parameters())})
else:
# parameter list: [torch.nn.parameter.Parameter]
params = params + list(cond_model.parameters())
return params
# ------------------------------------------------------------------
if self.cond_stage_trainable:
# print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = add_cond_model(self.cond_stage_model, params)
if self.learn_logvar:
print('Diffusion model optimizing logvar')
if isinstance(params[0], dict):
params.append({"params": [self.logvar]})
else:
params.append(self.logvar)
# --------------------------------------------------------------------------------
opt = torch.optim.AdamW(params, lr=lr)
# lr scheduler
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
}]
return [opt], scheduler
return opt
@torch.no_grad()
def to_rgb(self, x):
x = x.float()
if not hasattr(self, "colorize"):
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = nn.functional.conv2d(x, weight=self.colorize)
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
return x
@torch.no_grad()
def mask_to_rgb(self, x):
x = x * 255
x = x.int()
return x
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
print('Successfully initialize the diffusion model !')
self.conditioning_key = conditioning_key
# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'resblockcond', 'hybrid-adm', 'hybrid-time']
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
c_adm=None, s=None, mask=None, **kwargs):
# temporal_context = fps is foNone
if self.conditioning_key is None:
out = self.diffusion_model(x, t, **kwargs)
elif self.conditioning_key == 'concat':
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t, **kwargs)
elif self.conditioning_key == 'crossattn':
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc, **kwargs)
elif self.conditioning_key == 'hybrid':
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, **kwargs)
elif self.conditioning_key == 'resblockcond':
cc = c_crossattn[0]
out = self.diffusion_model(x, t, context=cc, **kwargs)
elif self.conditioning_key == 'adm':
cc = c_crossattn[0]
out = self.diffusion_model(x, t, y=cc, **kwargs)
elif self.conditioning_key == 'hybrid-adm':
assert c_adm is not None
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs)
elif self.conditioning_key == 'hybrid-time':
assert s is not None
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, s=s, **kwargs)
elif self.conditioning_key == 'concat-time-mask':
# assert s is not None
# print('x & mask:',x.shape,c_concat[0].shape)
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask, **kwargs)
elif self.conditioning_key == 'concat-adm-mask':
# assert s is not None
# print('x & mask:',x.shape,c_concat[0].shape)
if c_concat is not None:
xc = torch.cat([x] + c_concat, dim=1)
else:
xc = x
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask, **kwargs)
elif self.conditioning_key == 'crossattn-adm':
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc, y=s, **kwargs)
elif self.conditioning_key == 'hybrid-adm-mask':
cc = torch.cat(c_crossattn, 1)
if c_concat is not None:
xc = torch.cat([x] + c_concat, dim=1)
else:
xc = x
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask, **kwargs)
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
# assert s is not None
assert c_adm is not None
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm, **kwargs)
else:
raise NotImplementedError()
return out
class T2VAdapterDepth(LatentDiffusion):
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs):
super(T2VAdapterDepth, self).__init__(*args, **kwargs)
self.adapter = instantiate_from_config(adapter_config)
self.condtype = adapter_config.cond_name
self.depth_stage_model = instantiate_from_config(depth_stage_config)
def prepare_midas_input(self, batch_x):
# input: b,c,h,w
x_midas = torch.nn.functional.interpolate(batch_x, size=(384, 384), mode='bicubic')
return x_midas
@torch.no_grad()
def get_batch_depth(self, batch_x, target_size, encode_bs=1):
b, c, t, h, w = batch_x.shape
merge_x = rearrange(batch_x, 'b c t h w -> (b t) c h w')
split_x = torch.split(merge_x, encode_bs, dim=0)
cond_depth_list = []
for x in split_x:
x_midas = self.prepare_midas_input(x)
cond_depth = self.depth_stage_model(x_midas)
cond_depth = torch.nn.functional.interpolate(
cond_depth,
size=target_size,
mode="bicubic",
align_corners=False,
)
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True)
cond_depth = 2. * (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) - 1.
cond_depth_list.append(cond_depth)
batch_cond_depth=torch.cat(cond_depth_list, dim=0)
batch_cond_depth = rearrange(batch_cond_depth, '(b t) c h w -> b c t h w', b=b, t=t)
return batch_cond_depth
def get_adapter_features(self, extra_cond, encode_bs=1):
b, c, t, h, w = extra_cond.shape
## process in 2D manner
merge_extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w')
split_extra_cond = torch.split(merge_extra_cond, encode_bs, dim=0)
features_adapter_list = []
for extra_cond in split_extra_cond:
features_adapter = self.adapter(extra_cond)
features_adapter_list.append(features_adapter)
merge_features_adapter_list = []
for i in range(len(features_adapter_list[0])):
merge_features_adapter = torch.cat([features_adapter_list[num][i] for num in range(len(features_adapter_list))], dim=0)
merge_features_adapter_list.append(merge_features_adapter)
merge_features_adapter_list = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in merge_features_adapter_list]
return merge_features_adapter_list