Spaces:
Runtime error
Runtime error
import os | |
import time | |
import random | |
import itertools | |
from functools import partial | |
from contextlib import contextmanager | |
import numpy as np | |
from tqdm import tqdm | |
from einops import rearrange, repeat | |
import torch | |
import torch.nn as nn | |
import pytorch_lightning as pl | |
from torchvision.utils import make_grid | |
from torch.optim.lr_scheduler import LambdaLR | |
from pytorch_lightning.utilities import rank_zero_only | |
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution | |
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like | |
from lvdm.models.modules.lora import inject_trainable_lora | |
from lvdm.samplers.ddim import DDIMSampler | |
from lvdm.utils.common_utils import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config, check_istarget | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def uniform_on_device(r1, r2, shape, device): | |
return (r1 - r2) * torch.rand(*shape, device=device) + r2 | |
def split_video_to_clips(video, clip_length, drop_left=True): | |
video_length = video.shape[2] | |
shape = video.shape | |
if video_length % clip_length != 0 and drop_left: | |
video = video[:, :, :video_length // clip_length * clip_length, :, :] | |
print(f'[split_video_to_clips] Drop frames from {shape} to {video.shape}') | |
nclips = video_length // clip_length | |
clips = rearrange(video, 'b c (nc cl) h w -> (b nc) c cl h w', cl=clip_length, nc=nclips) | |
return clips | |
def merge_clips_to_videos(clips, bs): | |
nclips = clips.shape[0] // bs | |
video = rearrange(clips, '(b nc) c t h w -> b c (nc t) h w', nc=nclips) | |
return video | |
class DDPM(pl.LightningModule): | |
# classic DDPM with Gaussian diffusion, in pixel space | |
def __init__(self, | |
unet_config, | |
timesteps=1000, | |
beta_schedule="linear", | |
loss_type="l2", | |
ckpt_path=None, | |
ignore_keys=[], | |
load_only_unet=False, | |
monitor="val/loss", | |
use_ema=True, | |
first_stage_key="image", | |
image_size=256, | |
video_length=None, | |
channels=3, | |
log_every_t=100, | |
clip_denoised=True, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
given_betas=None, | |
original_elbo_weight=0., | |
v_posterior=0., | |
l_simple_weight=1., | |
conditioning_key=None, | |
parameterization="eps", | |
scheduler_config=None, | |
learn_logvar=False, | |
logvar_init=0., | |
*args, **kwargs | |
): | |
super().__init__() | |
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' | |
self.parameterization = parameterization | |
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") | |
self.cond_stage_model = None | |
self.clip_denoised = clip_denoised | |
self.log_every_t = log_every_t | |
self.first_stage_key = first_stage_key | |
self.image_size = image_size # try conv? | |
if isinstance(self.image_size, int): | |
self.image_size = [self.image_size, self.image_size] | |
self.channels = channels | |
self.model = DiffusionWrapper(unet_config, conditioning_key) | |
self.conditioning_key = conditioning_key # also register conditioning_key in diffusion | |
self.temporal_length = video_length if video_length is not None else unet_config.params.temporal_length | |
count_params(self.model, verbose=True) | |
self.use_ema = use_ema | |
self.use_scheduler = scheduler_config is not None | |
if self.use_scheduler: | |
self.scheduler_config = scheduler_config | |
self.v_posterior = v_posterior | |
self.original_elbo_weight = original_elbo_weight | |
self.l_simple_weight = l_simple_weight | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) | |
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, | |
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
if exists(given_betas): | |
betas = given_betas | |
else: | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
1. - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas ** 2 / ( | |
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
elif self.parameterization == "x0": | |
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
else: | |
raise NotImplementedError("mu not supported") | |
# TODO how to choose this term | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik) or (ik.startswith('**') and ik.split('**')[-1] in k): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
sd, strict=False) | |
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): | |
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
channels = self.channels | |
video_length = self.total_length | |
size = (batch_size, channels, video_length, *self.image_size) | |
return self.p_sample_loop(size, | |
return_intermediates=return_intermediates) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
def get_loss(self, pred, target, mean=True, mask=None): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == 'l2': | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
if mask is not None: | |
assert(mean is False) | |
assert(loss.shape[2:] == mask.shape[2:]) #thw need be the same | |
loss = loss * mask | |
return loss | |
def p_losses(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_out = self.model(x_noisy, t) | |
loss_dict = {} | |
if self.parameterization == "eps": | |
target = noise | |
elif self.parameterization == "x0": | |
target = x_start | |
else: | |
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") | |
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3, 4]) | |
log_prefix = 'train' if self.training else 'val' | |
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) | |
loss_simple = loss.mean() * self.l_simple_weight | |
loss_vlb = (self.lvlb_weights[t] * loss).mean() | |
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) | |
loss = loss_simple + self.original_elbo_weight * loss_vlb | |
loss_dict.update({f'{log_prefix}/loss': loss}) | |
return loss, loss_dict | |
def forward(self, x, *args, **kwargs): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
return self.p_losses(x, t, *args, **kwargs) | |
def get_input(self, batch, k): | |
x = batch[k] | |
x = x.to(memory_format=torch.contiguous_format).float() | |
return x | |
def shared_step(self, batch): | |
x = self.get_input(batch, self.first_stage_key) | |
loss, loss_dict = self(x) | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.shared_step(batch) | |
self.log_dict(loss_dict, prog_bar=True, | |
logger=True, on_step=True, on_epoch=True) | |
self.log("global_step", self.global_step, | |
prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.use_scheduler: | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.log_time: | |
total_train_time = (time.time() - self.start_time) / (3600*24) | |
avg_step_time = (time.time() - self.start_time) / (self.global_step + 1) | |
left_time_2w_step = (20000-self.global_step -1) * avg_step_time / (3600*24) | |
left_time_5w_step = (50000-self.global_step -1) * avg_step_time / (3600*24) | |
with open(self.logger_path, 'w') as f: | |
print(f'total_train_time = {total_train_time:.1f} days \n\ | |
total_train_step = {self.global_step + 1} steps \n\ | |
left_time_2w_step = {left_time_2w_step:.1f} days \n\ | |
left_time_5w_step = {left_time_5w_step:.1f} days', file=f) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
# _, loss_dict_no_ema = self.shared_step_validate(batch) | |
# with self.ema_scope(): | |
# _, loss_dict_ema = self.shared_step_validate(batch) | |
# loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} | |
# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
if (self.global_step) % self.val_fvd_interval == 0 and self.global_step != 0: | |
print(f'sample for fvd...') | |
self.log_images_kwargs = { | |
'inpaint': False, | |
'plot_diffusion_rows': False, | |
'plot_progressive_rows': False, | |
'ddim_steps': 50, | |
'unconditional_guidance_scale': 15.0, | |
} | |
torch.cuda.empty_cache() | |
logs = self.log_images(batch, **self.log_images_kwargs) | |
self.log("batch_idx", batch_idx, | |
prog_bar=True, on_step=True, on_epoch=False) | |
return {'real': logs['inputs'], 'fake': logs['samples'], 'conditioning_txt_img': logs['conditioning_txt_img']} | |
def get_condition_validate(self, prompt): | |
""" text embd | |
""" | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
c = self.get_learned_conditioning(prompt) | |
bs = c.shape[0] | |
return c | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.model) | |
def training_epoch_end(self, outputs): | |
if (self.current_epoch == 0) or self.resume_new_epoch == 0: | |
self.epoch_start_time = time.time() | |
self.current_epoch_time = 0 | |
self.total_time = 0 | |
self.epoch_time_avg = 0 | |
else: | |
self.current_epoch_time = time.time() - self.epoch_start_time | |
self.epoch_start_time = time.time() | |
self.total_time += self.current_epoch_time | |
self.epoch_time_avg = self.total_time / self.current_epoch | |
self.resume_new_epoch += 1 | |
epoch_avg_loss = torch.stack([x['loss'] for x in outputs]).mean() | |
self.log('train/epoch/loss', epoch_avg_loss, logger=True, on_epoch=True) | |
self.log('train/epoch/idx', self.current_epoch, logger=True, on_epoch=True) | |
self.log('train/epoch/time', self.current_epoch_time, logger=True, on_epoch=True) | |
self.log('train/epoch/time_avg', self.epoch_time_avg, logger=True, on_epoch=True) | |
self.log('train/epoch/time_avg_min', self.epoch_time_avg / 60, logger=True, on_epoch=True) | |
def _get_rows_from_list(self, samples): | |
n_imgs_per_row = len(samples) | |
denoise_grid = rearrange(samples, 'n b c t h w -> b n c t h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w') | |
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, | |
plot_diffusion_rows=True, plot_denoise_rows=True, **kwargs): | |
""" log images for DDPM """ | |
log = dict() | |
x = self.get_input(batch, self.first_stage_key) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
if 'fps' in batch: | |
log['fps'] = batch['fps'] | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
x_start = x[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
diffusion_row.append(x_noisy) | |
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) | |
log["samples"] = samples | |
if plot_denoise_rows: | |
log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
if self.learn_logvar: | |
params = params + [self.logvar] | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__(self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
cond_stage_key="image", | |
cond_stage_trainable=False, | |
concat_mode=True, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
scale_factor=1.0, | |
scale_by_std=False, | |
encoder_type="2d", | |
shift_factor=0.0, | |
split_clips=True, | |
downfactor_t=None, | |
clip_length=None, | |
only_model=False, | |
lora_args={}, | |
*args, **kwargs): | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs['timesteps'] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
if conditioning_key is None: | |
conditioning_key = 'concat' if concat_mode else 'crossattn' | |
if cond_stage_config == '__is_unconditional__': | |
conditioning_key = None | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.concat_mode = concat_mode | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.cond_stage_forward = cond_stage_forward | |
self.clip_denoised = False | |
self.bbox_tokenizer = None | |
self.cond_stage_config = cond_stage_config | |
self.first_stage_config = first_stage_config | |
self.encoder_type = encoder_type | |
assert(encoder_type in ["2d", "3d"]) | |
self.restarted_from_ckpt = False | |
self.shift_factor = shift_factor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
self.restarted_from_ckpt = True | |
self.split_clips = split_clips | |
self.downfactor_t = downfactor_t | |
self.clip_length = clip_length | |
# lora related args | |
self.inject_unet = getattr(lora_args, "inject_unet", False) | |
self.inject_clip = getattr(lora_args, "inject_clip", False) | |
self.inject_unet_key_word = getattr(lora_args, "inject_unet_key_word", None) | |
self.inject_clip_key_word = getattr(lora_args, "inject_clip_key_word", None) | |
self.lora_rank = getattr(lora_args, "lora_rank", 4) | |
def make_cond_schedule(self, ): | |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
self.cond_ids[:self.num_timesteps_cond] = ids | |
def inject_lora(self, lora_scale=1.0): | |
if self.inject_unet: | |
self.lora_require_grad_params, self.lora_names = inject_trainable_lora(self.model, self.inject_unet_key_word, | |
r=self.lora_rank, | |
scale=lora_scale | |
) | |
if self.inject_clip: | |
self.lora_require_grad_params_clip, self.lora_names_clip = inject_trainable_lora(self.cond_stage_model, self.inject_clip_key_word, | |
r=self.lora_rank, | |
scale=lora_scale | |
) | |
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None): | |
# only for very first batch, reset the self.scale_factor | |
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: | |
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
print("### USING STD-RESCALING ###") | |
x = super().get_input(batch, self.first_stage_key) | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
print(f"setting self.scale_factor to {self.scale_factor}") | |
print("### USING STD-RESCALING ###") | |
print(f"std={z.flatten().std()}") | |
def register_schedule(self, | |
given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if config is None: | |
self.cond_stage_model = None | |
return | |
if not self.cond_stage_trainable: | |
if config == "__is_first_stage__": | |
print("Using first stage also as cond stage.") | |
self.cond_stage_model = self.first_stage_model | |
elif config == "__is_unconditional__": | |
print(f"Training {self.__class__.__name__} as an unconditional model.") | |
self.cond_stage_model = None | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
assert config != '__is_first_stage__' | |
assert config != '__is_unconditional__' | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
def get_first_stage_encoding(self, encoder_posterior, noise=None): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample(noise=noise) | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
z = self.scale_factor * (z + self.shift_factor) | |
return z | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def get_condition(self, batch, x, bs, force_c_encode, k, cond_key, is_imgs=False): | |
is_conditional = self.model.conditioning_key is not None # crossattn | |
if is_conditional: | |
if cond_key is None: | |
cond_key = self.cond_stage_key | |
# get condition batch of different condition type | |
if cond_key != self.first_stage_key: | |
assert(cond_key in ["caption", "txt"]) | |
xc = batch[cond_key] | |
else: | |
xc = x | |
# if static video | |
if self.static_video: | |
xc_ = [c + ' (static)' for c in xc] | |
xc = xc_ | |
# get learned condition. | |
# can directly skip it: c = xc | |
if self.cond_stage_config is not None and (not self.cond_stage_trainable or force_c_encode): | |
if isinstance(xc, torch.Tensor): | |
xc = xc.to(self.device) | |
c = self.get_learned_conditioning(xc) | |
else: | |
c = xc | |
if self.classfier_free_guidance: | |
if cond_key in ['caption', "txt"] and self.uncond_type == 'empty_seq': | |
for i, ci in enumerate(c): | |
if random.random() < self.prob: | |
c[i] = "" | |
elif cond_key == 'class_label' and self.uncond_type == 'zero_embed': | |
pass | |
elif cond_key == 'class_label' and self.uncond_type == 'learned_embed': | |
import pdb;pdb.set_trace() | |
for i, ci in enumerate(c): | |
if random.random() < self.prob: | |
c[i]['class_label'] = self.n_classes | |
else: | |
raise NotImplementedError | |
if self.zero_cond_embed: | |
import pdb;pdb.set_trace() | |
c = torch.zeros_like(c) | |
# process c | |
if bs is not None: | |
if (is_imgs and not self.static_video): | |
c = c[:bs*self.temporal_length] # each random img (in T axis) has a corresponding prompt | |
else: | |
c = c[:bs] | |
else: | |
c = None | |
xc = None | |
return c, xc | |
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, | |
cond_key=None, return_original_cond=False, bs=None, mask_temporal=False): | |
""" Get input in LDM | |
""" | |
# get input imgaes | |
x = super().get_input(batch, k) # k = first_stage_key=image | |
is_imgs = True if k == 'jpg' else False | |
if is_imgs: | |
if self.static_video: | |
# repeat single img to a static video | |
x = x.unsqueeze(2) # bchw -> bc1hw | |
x = x.repeat(1,1,self.temporal_length,1,1) # bc1hw -> bcthw | |
else: | |
# rearrange to videos with T random img | |
bs_load = x.shape[0] // self.temporal_length | |
x = x[:bs_load*self.temporal_length, ...] | |
x = rearrange(x, '(b t) c h w -> b c t h w', t=self.temporal_length, b=bs_load) | |
if bs is not None: | |
x = x[:bs] | |
x = x.to(self.device) | |
x_ori = x | |
b, _, t, h, w = x.shape | |
# encode video frames x to z via a 2D encoder | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
encoder_posterior = self.encode_first_stage(x, mask_temporal) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) | |
c, xc = self.get_condition(batch, x, bs, force_c_encode, k, cond_key, is_imgs) | |
out = [z, c] | |
if return_first_stage_outputs: | |
xrec = self.decode_first_stage(z, mask_temporal=mask_temporal) | |
out.extend([x_ori, xrec]) | |
if return_original_cond: | |
if isinstance(xc, torch.Tensor) and xc.dim() == 4: | |
xc = rearrange(xc, '(b t) c h w -> b c t h w', b=b, t=t) | |
out.append(xc) | |
return out | |
def decode(self, z, **kwargs,): | |
z = 1. / self.scale_factor * z - self.shift_factor | |
results = self.first_stage_model.decode(z,**kwargs) | |
return results | |
def decode_first_stage_2DAE(self, z, decode_bs=16, return_cpu=True, **kwargs): | |
b, _, t, _, _ = z.shape | |
z = rearrange(z, 'b c t h w -> (b t) c h w') | |
if decode_bs is None: | |
results = self.decode(z, **kwargs) | |
else: | |
z = torch.split(z, decode_bs, dim=0) | |
if return_cpu: | |
results = torch.cat([self.decode(z_, **kwargs).cpu() for z_ in z], dim=0) | |
else: | |
results = torch.cat([self.decode(z_, **kwargs) for z_ in z], dim=0) | |
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t).contiguous() | |
return results | |
def decode_first_stage(self, z, decode_bs=16, return_cpu=True, **kwargs): | |
assert(self.encoder_type == "2d" and z.dim() == 5) | |
return self.decode_first_stage_2DAE(z, decode_bs=decode_bs, return_cpu=return_cpu, **kwargs) | |
def encode_first_stage_2DAE(self, x, encode_bs=16): | |
b, _, t, _, _ = x.shape | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
if encode_bs is None: | |
results = self.first_stage_model.encode(x) | |
else: | |
x = torch.split(x, encode_bs, dim=0) | |
zs = [] | |
for x_ in x: | |
encoder_posterior = self.first_stage_model.encode(x_) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
zs.append(z) | |
results = torch.cat(zs, dim=0) | |
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) | |
return results | |
def encode_first_stage(self, x): | |
assert(self.encoder_type == "2d" and x.dim() == 5) | |
b, _, t, _, _ = x.shape | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
results = self.first_stage_model.encode(x) | |
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) | |
return results | |
def shared_step(self, batch, **kwargs): | |
""" shared step of LDM. | |
If learned condition, c is raw condition (e.g. text) | |
Encoding condition is performed in below forward function. | |
""" | |
x, c = self.get_input(batch, self.first_stage_key) | |
loss = self(x, c) | |
return loss | |
def forward(self, x, c, *args, **kwargs): | |
start_t = getattr(self, "start_t", 0) | |
end_t = getattr(self, "end_t", self.num_timesteps) | |
t = torch.randint(start_t, end_t, (x.shape[0],), device=self.device).long() | |
if self.model.conditioning_key is not None: | |
assert c is not None | |
if self.cond_stage_trainable: | |
c = self.get_learned_conditioning(c) | |
if self.classfier_free_guidance and self.uncond_type == 'zero_embed': | |
for i, ci in enumerate(c): | |
if random.random() < self.prob: | |
c[i] = torch.zeros_like(c[i]) | |
if self.shorten_cond_schedule: # TODO: drop this option | |
tc = self.cond_ids[t].to(self.device) | |
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) | |
return self.p_losses(x, c, t, *args, **kwargs) | |
def apply_model(self, x_noisy, t, cond, return_ids=False, **kwargs): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
pass | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
cond = {key: cond} | |
x_recon = self.model(x_noisy, t, **cond, **kwargs) | |
if isinstance(x_recon, tuple) and not return_ids: | |
return x_recon[0] | |
else: | |
return x_recon | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def p_losses(self, x_start, cond, t, noise=None, skip_qsample=False, x_noisy=None, cond_mask=None, **kwargs,): | |
if not skip_qsample: | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
else: | |
assert(x_noisy is not None) | |
assert(noise is not None) | |
model_output = self.apply_model(x_noisy, t, cond, **kwargs) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4]) | |
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
if self.logvar.device != self.device: | |
self.logvar = self.logvar.to(self.device) | |
logvar_t = self.logvar[t] | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
if self.learn_logvar: | |
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
loss_dict.update({'logvar': self.logvar.data.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
return_x0=False, score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, | |
uc_type=None,): | |
t_in = t | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
else: | |
# with unconditional condition | |
if isinstance(c, torch.Tensor): | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t] * 2) | |
c_in = torch.cat([unconditional_conditioning, c]) | |
model_out_uncond, model_out = self.apply_model(x_in, t_in, c_in, return_ids=return_codebook_ids).chunk(2) | |
elif isinstance(c, dict): | |
model_out = self.apply_model(x, t, c, return_ids=return_codebook_ids) | |
model_out_uncond = self.apply_model(x, t, unconditional_conditioning, return_ids=return_codebook_ids) | |
else: | |
raise NotImplementedError | |
if uc_type is None: | |
model_out = model_out_uncond + unconditional_guidance_scale * (model_out - model_out_uncond) | |
else: | |
if uc_type == 'cfg_original': | |
model_out = model_out + unconditional_guidance_scale * (model_out - model_out_uncond) | |
elif uc_type == 'cfg_ours': | |
model_out = model_out + unconditional_guidance_scale * (model_out_uncond - model_out) | |
else: | |
raise NotImplementedError | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, | |
uc_type=None,): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
uc_type=uc_type,) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_codebook_ids: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, return_x0=True, | |
temperature=temperature[i], noise_dropout=noise_dropout, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop(self, cond, shape, return_intermediates=False, | |
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, start_T=None, | |
log_every_t=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, | |
uc_type=None,): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
# sample an initial noise | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
uc_type=uc_type) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
verbose=True, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, shape=None, **kwargs): | |
if shape is None: | |
shape = (batch_size, self.channels, self.total_length, *self.image_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
return self.p_sample_loop(cond, | |
shape, | |
return_intermediates=return_intermediates, x_T=x_T, | |
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
mask=mask, x0=x0,) | |
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): | |
if ddim: | |
ddim_sampler = DDIMSampler(self) | |
shape = (self.channels, self.total_length, *self.image_size) | |
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, | |
shape,cond,verbose=False, **kwargs) | |
else: | |
samples, intermediates = self.sample(cond=cond, batch_size=batch_size, | |
return_intermediates=True, **kwargs) | |
return samples, intermediates | |
def log_condition(self, log, batch, xc, x, c, cond_stage_key=None): | |
""" | |
xc: oringinal condition before enconding. | |
c: condition after encoding. | |
""" | |
if x.dim() == 5: | |
txt_img_shape = [x.shape[3], x.shape[4]] | |
elif x.dim() == 4: | |
txt_img_shape = [x.shape[2], x.shape[3]] | |
else: | |
raise ValueError | |
if self.model.conditioning_key is not None: #concat-time-mask | |
if hasattr(self.cond_stage_model, "decode"): | |
xc = self.cond_stage_model.decode(c) | |
log["conditioning"] = xc | |
elif cond_stage_key in ["caption", "txt"]: | |
log["conditioning_txt_img"] = log_txt_as_img(txt_img_shape, batch[cond_stage_key], size=x.shape[3]//25) | |
log["conditioning_txt"] = batch[cond_stage_key] | |
elif cond_stage_key == 'class_label': | |
try: | |
xc = log_txt_as_img(txt_img_shape, batch["human_label"], size=x.shape[3]//25) | |
except: | |
xc = log_txt_as_img(txt_img_shape, batch["class_name"], size=x.shape[3]//25) | |
log['conditioning'] = xc | |
elif isimage(xc): | |
log["conditioning"] = xc | |
if ismap(xc): | |
log["original_conditioning"] = self.to_rgb(xc) | |
if isinstance(c, dict) and 'mask' in c: | |
log['mask'] =self.mask_to_rgb(c['mask']) | |
return log | |
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., unconditional_guidance_scale=1.0, | |
first_stage_key2=None, cond_key2=None, | |
c=None, | |
**kwargs): | |
""" log images for LatentDiffusion """ | |
use_ddim = ddim_steps is not None | |
is_imgs = first_stage_key2 is not None | |
if is_imgs: | |
assert(cond_key2 is not None) | |
log = dict() | |
# get input | |
z, c, x, xrec, xc = self.get_input(batch, | |
k=self.first_stage_key if first_stage_key2 is None else first_stage_key2, | |
return_first_stage_outputs=True, | |
force_c_encode=True, | |
return_original_cond=True, | |
bs=N, | |
cond_key=cond_key2 if cond_key2 is not None else None, | |
) | |
N_ori = N | |
N = min(z.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
if unconditional_guidance_scale != 1.0: | |
prompts = N * self.temporal_length * [""] if (is_imgs and not self.static_video) else N * [""] | |
uc = self.get_condition_validate(prompts) | |
else: | |
uc = None | |
log["inputs"] = x | |
log["reconstruction"] = xrec | |
log = self.log_condition(log, batch, xc, x, c, | |
cond_stage_key=self.cond_stage_key if cond_key2 is None else cond_key2 | |
) | |
if sample: | |
with self.ema_scope("Plotting"): | |
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta, | |
temporal_length=self.video_length, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc, **kwargs, | |
) | |
# decode samples | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
return log | |
def configure_optimizers(self): | |
""" configure_optimizers for LatentDiffusion """ | |
lr = self.learning_rate | |
# -------------------------------------------------------------------------------- | |
# set parameters | |
if hasattr(self, "only_optimize_empty_parameters") and self.only_optimize_empty_parameters: | |
print("[INFO] Optimize only empty parameters!") | |
assert(hasattr(self, "empty_paras")) | |
params = [p for n, p in self.model.named_parameters() if n in self.empty_paras] | |
elif hasattr(self, "only_optimize_pretrained_parameters") and self.only_optimize_pretrained_parameters: | |
print("[INFO] Optimize only pretrained parameters!") | |
assert(hasattr(self, "empty_paras")) | |
params = [p for n, p in self.model.named_parameters() if n not in self.empty_paras] | |
assert(len(params) != 0) | |
elif getattr(self, "optimize_empty_and_spatialattn", False): | |
print("[INFO] Optimize empty parameters + spatial transformer!") | |
assert(hasattr(self, "empty_paras")) | |
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras] | |
SA_list = [".attn1.", ".attn2.", ".ff.", ".norm1.", ".norm2.", ".norm3."] | |
SA_params = [p for n, p in self.model.named_parameters() if check_istarget(n, SA_list)] | |
if getattr(self, "spatial_lr_decay", False): | |
params = [ | |
{"params": empty_paras}, | |
{"params": SA_params, "lr": lr * self.spatial_lr_decay} | |
] | |
else: | |
params = empty_paras + SA_params | |
else: | |
# optimize whole denoiser | |
if hasattr(self, "spatial_lr_decay") and self.spatial_lr_decay: | |
print("[INFO] Optimize the whole net with different lr!") | |
print(f"[INFO] {lr} for empty paras, {lr * self.spatial_lr_decay} for pretrained paras!") | |
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras] | |
# assert(len(empty_paras) == len(self.empty_paras)) # self.empty_paras:cond_stage_model.embedding.weight not in diffusion model params | |
pretrained_paras = [p for n, p in self.model.named_parameters() if n not in self.empty_paras] | |
params = [ | |
{"params": empty_paras}, | |
{"params": pretrained_paras, "lr": lr * self.spatial_lr_decay} | |
] | |
print(f"[INFO] Empty paras: {len(empty_paras)}, Pretrained paras: {len(pretrained_paras)}") | |
else: | |
params = list(self.model.parameters()) | |
if hasattr(self, "generator_trainable") and not self.generator_trainable: | |
# fix unet denoiser | |
params = list() | |
if self.inject_unet: | |
params = itertools.chain(*self.lora_require_grad_params) | |
if self.inject_clip: | |
if self.inject_unet: | |
params = list(params)+list(itertools.chain(*self.lora_require_grad_params_clip)) | |
else: | |
params = itertools.chain(*self.lora_require_grad_params_clip) | |
# append paras | |
# ------------------------------------------------------------------ | |
def add_cond_model(cond_model, params): | |
if isinstance(params[0], dict): | |
# parameter groups | |
params.append({"params": list(cond_model.parameters())}) | |
else: | |
# parameter list: [torch.nn.parameter.Parameter] | |
params = params + list(cond_model.parameters()) | |
return params | |
# ------------------------------------------------------------------ | |
if self.cond_stage_trainable: | |
# print(f"{self.__class__.__name__}: Also optimizing conditioner params!") | |
params = add_cond_model(self.cond_stage_model, params) | |
if self.learn_logvar: | |
print('Diffusion model optimizing logvar') | |
if isinstance(params[0], dict): | |
params.append({"params": [self.logvar]}) | |
else: | |
params.append(self.logvar) | |
# -------------------------------------------------------------------------------- | |
opt = torch.optim.AdamW(params, lr=lr) | |
# lr scheduler | |
if self.use_scheduler: | |
assert 'target' in self.scheduler_config | |
scheduler = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
scheduler = [ | |
{ | |
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
return [opt], scheduler | |
return opt | |
def to_rgb(self, x): | |
x = x.float() | |
if not hasattr(self, "colorize"): | |
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) | |
x = nn.functional.conv2d(x, weight=self.colorize) | |
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
return x | |
def mask_to_rgb(self, x): | |
x = x * 255 | |
x = x.int() | |
return x | |
class DiffusionWrapper(pl.LightningModule): | |
def __init__(self, diff_model_config, conditioning_key): | |
super().__init__() | |
self.diffusion_model = instantiate_from_config(diff_model_config) | |
print('Successfully initialize the diffusion model !') | |
self.conditioning_key = conditioning_key | |
# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'resblockcond', 'hybrid-adm', 'hybrid-time'] | |
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, | |
c_adm=None, s=None, mask=None, **kwargs): | |
# temporal_context = fps is foNone | |
if self.conditioning_key is None: | |
out = self.diffusion_model(x, t, **kwargs) | |
elif self.conditioning_key == 'concat': | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, **kwargs) | |
elif self.conditioning_key == 'crossattn': | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(x, t, context=cc, **kwargs) | |
elif self.conditioning_key == 'hybrid': | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, **kwargs) | |
elif self.conditioning_key == 'resblockcond': | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, context=cc, **kwargs) | |
elif self.conditioning_key == 'adm': | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, y=cc, **kwargs) | |
elif self.conditioning_key == 'hybrid-adm': | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs) | |
elif self.conditioning_key == 'hybrid-time': | |
assert s is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s, **kwargs) | |
elif self.conditioning_key == 'concat-time-mask': | |
# assert s is not None | |
# print('x & mask:',x.shape,c_concat[0].shape) | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask, **kwargs) | |
elif self.conditioning_key == 'concat-adm-mask': | |
# assert s is not None | |
# print('x & mask:',x.shape,c_concat[0].shape) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask, **kwargs) | |
elif self.conditioning_key == 'crossattn-adm': | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(x, t, context=cc, y=s, **kwargs) | |
elif self.conditioning_key == 'hybrid-adm-mask': | |
cc = torch.cat(c_crossattn, 1) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask, **kwargs) | |
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index | |
# assert s is not None | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm, **kwargs) | |
else: | |
raise NotImplementedError() | |
return out | |
class T2VAdapterDepth(LatentDiffusion): | |
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs): | |
super(T2VAdapterDepth, self).__init__(*args, **kwargs) | |
self.adapter = instantiate_from_config(adapter_config) | |
self.condtype = adapter_config.cond_name | |
self.depth_stage_model = instantiate_from_config(depth_stage_config) | |
def prepare_midas_input(self, batch_x): | |
# input: b,c,h,w | |
x_midas = torch.nn.functional.interpolate(batch_x, size=(384, 384), mode='bicubic') | |
return x_midas | |
def get_batch_depth(self, batch_x, target_size, encode_bs=1): | |
b, c, t, h, w = batch_x.shape | |
merge_x = rearrange(batch_x, 'b c t h w -> (b t) c h w') | |
split_x = torch.split(merge_x, encode_bs, dim=0) | |
cond_depth_list = [] | |
for x in split_x: | |
x_midas = self.prepare_midas_input(x) | |
cond_depth = self.depth_stage_model(x_midas) | |
cond_depth = torch.nn.functional.interpolate( | |
cond_depth, | |
size=target_size, | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True) | |
cond_depth = 2. * (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) - 1. | |
cond_depth_list.append(cond_depth) | |
batch_cond_depth=torch.cat(cond_depth_list, dim=0) | |
batch_cond_depth = rearrange(batch_cond_depth, '(b t) c h w -> b c t h w', b=b, t=t) | |
return batch_cond_depth | |
def get_adapter_features(self, extra_cond, encode_bs=1): | |
b, c, t, h, w = extra_cond.shape | |
## process in 2D manner | |
merge_extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w') | |
split_extra_cond = torch.split(merge_extra_cond, encode_bs, dim=0) | |
features_adapter_list = [] | |
for extra_cond in split_extra_cond: | |
features_adapter = self.adapter(extra_cond) | |
features_adapter_list.append(features_adapter) | |
merge_features_adapter_list = [] | |
for i in range(len(features_adapter_list[0])): | |
merge_features_adapter = torch.cat([features_adapter_list[num][i] for num in range(len(features_adapter_list))], dim=0) | |
merge_features_adapter_list.append(merge_features_adapter) | |
merge_features_adapter_list = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in merge_features_adapter_list] | |
return merge_features_adapter_list | |