videocrafter / lvdm /models /modules /openaimodel3d.py
RamAnanth1's picture
Upload 26 files
ba984b2
raw
history blame
No virus
26.8 kB
from abc import abstractmethod
import math
from einops import rearrange
from functools import partial
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from omegaconf.listconfig import ListConfig
from lvdm.models.modules.util import (
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
nonlinearity,
)
# dummy replace
def convert_module_to_f16(x):
pass
def convert_module_to_f32(x):
pass
## go
# ---------------------------------------------------------------------------------------------------
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
# ---------------------------------------------------------------------------------------------------
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context, **kwargs):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, **kwargs)
elif isinstance(layer, STTransformerClass):
x = layer(x, context, **kwargs)
else:
x = layer(x)
return x
# ---------------------------------------------------------------------------------------------------
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,
kernel_size_t=3,
padding_t=1,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
# ---------------------------------------------------------------------------------------------------
class TransposedUpsample(nn.Module):
'Learned 2x upsampling without padding'
def __init__(self, channels, out_channels=None, ks=5):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
def forward(self,x):
return self.up(x)
# ---------------------------------------------------------------------------------------------------
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,
kernel_size_t=3,
padding_t=1,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, (kernel_size_t, 3,3), stride=stride, padding=(padding_t, 1,1)
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
# ---------------------------------------------------------------------------------------------------
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
# temporal
kernel_size_t=3,
padding_t=1,
nonlinearity_type='silu',
**kwargs
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.nonlinearity_type = nonlinearity_type
self.in_layers = nn.Sequential(
normalization(channels),
nonlinearity(nonlinearity_type),
conv_nd(dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
self.x_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
elif down:
self.h_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
self.x_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nonlinearity(nonlinearity_type),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nonlinearity(nonlinearity_type),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb, **kwargs):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(self._forward,
(x, emb),
self.parameters(),
self.use_checkpoint
)
def _forward(self, x, emb,):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
if emb_out.dim() == 3: # btc for video data
emb_out = rearrange(emb_out, 'b t c -> b c t')
while len(emb_out.shape) < h.dim():
emb_out = emb_out[..., None] # bct -> bct11 or bc -> bc111
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
out = self.skip_connection(x) + h
return out
# ---------------------------------------------------------------------------------------------------
def make_spatialtemporal_transformer(module_name='attention_temporal', class_name='SpatialTemporalTransformer'):
module = __import__(f"lvdm.models.modules.{module_name}", fromlist=[class_name])
global STTransformerClass
STTransformerClass = getattr(module, class_name)
return STTransformerClass
# ---------------------------------------------------------------------------------------------------
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
image_size, # not used in UNetModel
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=3,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
legacy=True,
# temporal related
kernel_size_t=1,
padding_t=1,
use_temporal_transformer=True,
temporal_length=None,
use_relative_position=False,
cross_attn_on_tempoal=False,
temporal_crossattn_type="crossattn",
order="stst",
nonlinearity_type='silu',
temporalcrossfirst=False,
split_stcontext=False,
temporal_context_dim=None,
use_tempoal_causal_attn=False,
ST_transformer_module='attention_temporal',
ST_transformer_class='SpatialTemporalTransformer',
**kwargs,
):
super().__init__()
assert(use_temporal_transformer)
if context_dim is not None:
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.use_relative_position = use_relative_position
self.temporal_length = temporal_length
self.cross_attn_on_tempoal = cross_attn_on_tempoal
self.temporal_crossattn_type = temporal_crossattn_type
self.order = order
self.temporalcrossfirst = temporalcrossfirst
self.split_stcontext = split_stcontext
self.temporal_context_dim = temporal_context_dim
self.nonlinearity_type = nonlinearity_type
self.use_tempoal_causal_attn = use_tempoal_causal_attn
time_embed_dim = model_channels * 4
self.time_embed_dim = time_embed_dim
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nonlinearity(nonlinearity_type),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
STTransformerClass = make_spatialtemporal_transformer(module_name=ST_transformer_module,
class_name=ST_transformer_class)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
layers.append(STTransformerClass(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
# temporal related
temporal_length=temporal_length,
use_relative_position=use_relative_position,
cross_attn_on_tempoal=cross_attn_on_tempoal,
temporal_crossattn_type=temporal_crossattn_type,
order=order,
temporalcrossfirst=temporalcrossfirst,
split_stcontext=split_stcontext,
temporal_context_dim=temporal_context_dim,
use_tempoal_causal_attn=use_tempoal_causal_attn,
**kwargs,
))
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
),
STTransformerClass(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
# temporal related
temporal_length=temporal_length,
use_relative_position=use_relative_position,
cross_attn_on_tempoal=cross_attn_on_tempoal,
temporal_crossattn_type=temporal_crossattn_type,
order=order,
temporalcrossfirst=temporalcrossfirst,
split_stcontext=split_stcontext,
temporal_context_dim=temporal_context_dim,
use_tempoal_causal_attn=use_tempoal_causal_attn,
**kwargs,
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
layers.append(
STTransformerClass(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
# temporal related
temporal_length=temporal_length,
use_relative_position=use_relative_position,
cross_attn_on_tempoal=cross_attn_on_tempoal,
temporal_crossattn_type=temporal_crossattn_type,
order=order,
temporalcrossfirst=temporalcrossfirst,
split_stcontext=split_stcontext,
temporal_context_dim=temporal_context_dim,
use_tempoal_causal_attn=use_tempoal_causal_attn,
**kwargs,
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
kernel_size_t=kernel_size_t,
padding_t=padding_t,
nonlinearity_type=nonlinearity_type,
**kwargs
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nonlinearity(nonlinearity_type),
zero_module(conv_nd(dims, model_channels, out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))),
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32)
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, features_adapter=None, y=None, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
hs = []
if time_emb_replace is None:
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
else:
emb = time_emb_replace
if y is not None: # if class-conditional model, inject class labels
assert y.shape == (x.shape[0],)
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
adapter_idx = 0
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context, **kwargs)
## plug-in adapter features
if ((id+1)%3 == 0) and features_adapter is not None:
h = h + features_adapter[adapter_idx]
adapter_idx += 1
hs.append(h)
if features_adapter is not None:
assert len(features_adapter)==adapter_idx, 'Mismatch features adapter'
h = self.middle_block(h, emb, context, **kwargs)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context, **kwargs)
h = h.type(x.dtype)
return self.out(h)