Spaces:
Runtime error
Runtime error
from abc import abstractmethod | |
import math | |
from einops import rearrange | |
from functools import partial | |
import numpy as np | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from omegaconf.listconfig import ListConfig | |
from lvdm.models.modules.util import ( | |
checkpoint, | |
conv_nd, | |
linear, | |
avg_pool_nd, | |
zero_module, | |
normalization, | |
timestep_embedding, | |
nonlinearity, | |
) | |
# dummy replace | |
def convert_module_to_f16(x): | |
pass | |
def convert_module_to_f32(x): | |
pass | |
## go | |
# --------------------------------------------------------------------------------------------------- | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
# --------------------------------------------------------------------------------------------------- | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb, context, **kwargs): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb, **kwargs) | |
elif isinstance(layer, STTransformerClass): | |
x = layer(x, context, **kwargs) | |
else: | |
x = layer(x) | |
return x | |
# --------------------------------------------------------------------------------------------------- | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, | |
kernel_size_t=3, | |
padding_t=1, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, self.channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
# --------------------------------------------------------------------------------------------------- | |
class TransposedUpsample(nn.Module): | |
'Learned 2x upsampling without padding' | |
def __init__(self, channels, out_channels=None, ks=5): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) | |
def forward(self,x): | |
return self.up(x) | |
# --------------------------------------------------------------------------------------------------- | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, | |
kernel_size_t=3, | |
padding_t=1, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, self.channels, self.out_channels, (kernel_size_t, 3,3), stride=stride, padding=(padding_t, 1,1) | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
# --------------------------------------------------------------------------------------------------- | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
up=False, | |
down=False, | |
# temporal | |
kernel_size_t=3, | |
padding_t=1, | |
nonlinearity_type='silu', | |
**kwargs | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.nonlinearity_type = nonlinearity_type | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nonlinearity(nonlinearity_type), | |
conv_nd(dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t) | |
self.x_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t) | |
self.x_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nonlinearity(nonlinearity_type), | |
linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nonlinearity(nonlinearity_type), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1) | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb, **kwargs): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return checkpoint(self._forward, | |
(x, emb), | |
self.parameters(), | |
self.use_checkpoint | |
) | |
def _forward(self, x, emb,): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
if emb_out.dim() == 3: # btc for video data | |
emb_out = rearrange(emb_out, 'b t c -> b c t') | |
while len(emb_out.shape) < h.dim(): | |
emb_out = emb_out[..., None] # bct -> bct11 or bc -> bc111 | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
out = self.skip_connection(x) + h | |
return out | |
# --------------------------------------------------------------------------------------------------- | |
def make_spatialtemporal_transformer(module_name='attention_temporal', class_name='SpatialTemporalTransformer'): | |
module = __import__(f"lvdm.models.modules.{module_name}", fromlist=[class_name]) | |
global STTransformerClass | |
STTransformerClass = getattr(module, class_name) | |
return STTransformerClass | |
# --------------------------------------------------------------------------------------------------- | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
image_size, # not used in UNetModel | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=3, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
legacy=True, | |
# temporal related | |
kernel_size_t=1, | |
padding_t=1, | |
use_temporal_transformer=True, | |
temporal_length=None, | |
use_relative_position=False, | |
cross_attn_on_tempoal=False, | |
temporal_crossattn_type="crossattn", | |
order="stst", | |
nonlinearity_type='silu', | |
temporalcrossfirst=False, | |
split_stcontext=False, | |
temporal_context_dim=None, | |
use_tempoal_causal_attn=False, | |
ST_transformer_module='attention_temporal', | |
ST_transformer_class='SpatialTemporalTransformer', | |
**kwargs, | |
): | |
super().__init__() | |
assert(use_temporal_transformer) | |
if context_dim is not None: | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.use_relative_position = use_relative_position | |
self.temporal_length = temporal_length | |
self.cross_attn_on_tempoal = cross_attn_on_tempoal | |
self.temporal_crossattn_type = temporal_crossattn_type | |
self.order = order | |
self.temporalcrossfirst = temporalcrossfirst | |
self.split_stcontext = split_stcontext | |
self.temporal_context_dim = temporal_context_dim | |
self.nonlinearity_type = nonlinearity_type | |
self.use_tempoal_causal_attn = use_tempoal_causal_attn | |
time_embed_dim = model_channels * 4 | |
self.time_embed_dim = time_embed_dim | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nonlinearity(nonlinearity_type), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
STTransformerClass = make_spatialtemporal_transformer(module_name=ST_transformer_module, | |
class_name=ST_transformer_class) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels | |
layers.append(STTransformerClass( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
# temporal related | |
temporal_length=temporal_length, | |
use_relative_position=use_relative_position, | |
cross_attn_on_tempoal=cross_attn_on_tempoal, | |
temporal_crossattn_type=temporal_crossattn_type, | |
order=order, | |
temporalcrossfirst=temporalcrossfirst, | |
split_stcontext=split_stcontext, | |
temporal_context_dim=temporal_context_dim, | |
use_tempoal_causal_attn=use_tempoal_causal_attn, | |
**kwargs, | |
)) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
), | |
STTransformerClass( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
# temporal related | |
temporal_length=temporal_length, | |
use_relative_position=use_relative_position, | |
cross_attn_on_tempoal=cross_attn_on_tempoal, | |
temporal_crossattn_type=temporal_crossattn_type, | |
order=order, | |
temporalcrossfirst=temporalcrossfirst, | |
split_stcontext=split_stcontext, | |
temporal_context_dim=temporal_context_dim, | |
use_tempoal_causal_attn=use_tempoal_causal_attn, | |
**kwargs, | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
), | |
) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels | |
layers.append( | |
STTransformerClass( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
# temporal related | |
temporal_length=temporal_length, | |
use_relative_position=use_relative_position, | |
cross_attn_on_tempoal=cross_attn_on_tempoal, | |
temporal_crossattn_type=temporal_crossattn_type, | |
order=order, | |
temporalcrossfirst=temporalcrossfirst, | |
split_stcontext=split_stcontext, | |
temporal_context_dim=temporal_context_dim, | |
use_tempoal_causal_attn=use_tempoal_causal_attn, | |
**kwargs, | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
kernel_size_t=kernel_size_t, | |
padding_t=padding_t, | |
nonlinearity_type=nonlinearity_type, | |
**kwargs | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nonlinearity(nonlinearity_type), | |
zero_module(conv_nd(dims, model_channels, out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))), | |
) | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
self.output_blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
self.output_blocks.apply(convert_module_to_f32) | |
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, y=None, **kwargs): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param context: conditioning plugged in via crossattn | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
hs = [] | |
if time_emb_replace is None: | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
else: | |
emb = time_emb_replace | |
if y is not None: # if class-conditional model, inject class labels | |
assert y.shape == (x.shape[0],) | |
emb = emb + self.label_emb(y) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context, **kwargs) | |
hs.append(h) | |
h = self.middle_block(h, emb, context, **kwargs) | |
for module in self.output_blocks: | |
h = th.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context, **kwargs) | |
h = h.type(x.dtype) | |
return self.out(h) | |