Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import opendatasets as od | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as plt | |
tf.get_logger().setLevel("ERROR") | |
# create tokenizer from pre-trained model | |
tokenizer = AutoTokenizer.from_pretrained( | |
"blanchefort/rubert-base-cased-sentiment-rurewiews" | |
) | |
# Load the model | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"blanchefort/rubert-base-cased-sentiment-rurewiews" | |
) | |
# Create a pipeline for the model | |
pipe = pipeline( | |
"text-classification", model="blanchefort/rubert-base-cased-sentiment-rurewiews" | |
) | |
# load review from open dataset | |
od.download_kaggle_dataset("vigneshwarsofficial/reviews", data_dir="restaurent_review") | |
prediction_data = pd.read_csv( | |
"restaurent_review/reviews/Restaurant_Reviews.tsv", delimiter="\t" | |
) | |
# popping irrelevant coloumn | |
prediction_data.pop("Liked") | |
# making a list | |
data = list(prediction_data["Review"]) | |
# making prediction using pipe | |
results = pipe(data) | |
# Categorizing result | |
positive_counter = 0 | |
negative_counter = 0 | |
neutral_counter = 0 | |
for x in results: | |
if x["label"] == "POSITIVE": | |
positive_counter = positive_counter + 1 | |
elif x["label"] == "NEGATIVE": | |
negative_counter = negative_counter + 1 | |
else: | |
neutral_counter = neutral_counter + 1 | |
result_data = pd.DataFrame( | |
{ | |
"count": [positive_counter, negative_counter, neutral_counter], | |
"sentiment": ["Positive", "Negative", "Neutral"], | |
} | |
) | |
# create bar chart interface on gradio | |
def plotly_plot(): | |
p = plt.bar( | |
result_data, | |
x="sentiment", | |
y="count", | |
title="Restaurent Review Analysis", | |
color="count", | |
) | |
return p | |
# show the results | |
outputs = gr.Plot() | |
demo = gr.Interface( | |
fn=plotly_plot, | |
inputs=None, | |
outputs=outputs, | |
title="Restaurant Customer Review Sentiment Analysis", | |
) | |
demo.launch() | |