Spaces:
Runtime error
Runtime error
RashiAgarwal
commited on
Commit
•
6cb857a
1
Parent(s):
9d99be0
Upload 10 files
Browse files- app.py +337 -0
- learned_embeds.bin +3 -0
- learned_embeds_b.bin +3 -0
- learned_embeds_c.bin +3 -0
- learned_embeds_c1.bin +3 -0
- learned_embeds_h.bin +3 -0
- learned_embeds_i.bin +3 -0
- learned_embeds_m.bin +3 -0
- learned_embeds_mg.bin +3 -0
- learned_embeds_s.bin +3 -0
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#!pip install -q --upgrade transformers diffusers ftfy
|
3 |
+
!pip install -q --upgrade transformers==4.25.1 diffusers ftfy
|
4 |
+
!pip install accelerate -q
|
5 |
+
|
6 |
+
from base64 import b64encode
|
7 |
+
|
8 |
+
import numpy
|
9 |
+
import torch
|
10 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
11 |
+
from huggingface_hub import notebook_login
|
12 |
+
|
13 |
+
# For video display:
|
14 |
+
from IPython.display import HTML
|
15 |
+
from matplotlib import pyplot as plt
|
16 |
+
from pathlib import Path
|
17 |
+
from PIL import Image
|
18 |
+
from torch import autocast
|
19 |
+
from torchvision import transforms as tfms
|
20 |
+
from tqdm.auto import tqdm
|
21 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
22 |
+
|
23 |
+
torch.manual_seed(1)
|
24 |
+
#if not (Path.home()/'.huggingface'/'token').exists(): notebook_login()
|
25 |
+
|
26 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
27 |
+
logging.set_verbosity_error()
|
28 |
+
|
29 |
+
# Set device
|
30 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
import os
|
33 |
+
MY_TOKEN=os.environ.get('HF_TOKEN_SD')
|
34 |
+
|
35 |
+
|
36 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
37 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae",use_auth_token=MY_TOKEN)
|
38 |
+
|
39 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
40 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
41 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
42 |
+
|
43 |
+
# The UNet model for generating the latents.
|
44 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
45 |
+
|
46 |
+
# The noise scheduler
|
47 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
48 |
+
|
49 |
+
# To the GPU we go!
|
50 |
+
vae = vae.to(torch_device)
|
51 |
+
text_encoder = text_encoder.to(torch_device)
|
52 |
+
unet = unet.to(torch_device)
|
53 |
+
|
54 |
+
"""Functions"""
|
55 |
+
|
56 |
+
def pil_to_latent(input_im):
|
57 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
58 |
+
with torch.no_grad():
|
59 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
60 |
+
return 0.18215 * latent.latent_dist.sample()
|
61 |
+
|
62 |
+
def latents_to_pil(latents):
|
63 |
+
# bath of latents -> list of images
|
64 |
+
latents = (1 / 0.18215) * latents
|
65 |
+
with torch.no_grad():
|
66 |
+
image = vae.decode(latents).sample
|
67 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
68 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
69 |
+
images = (image * 255).round().astype("uint8")
|
70 |
+
pil_images = [Image.fromarray(image) for image in images]
|
71 |
+
return pil_images
|
72 |
+
|
73 |
+
|
74 |
+
def get_output_embeds(input_embeddings):
|
75 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
76 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
77 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
78 |
+
|
79 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
80 |
+
# so that it doesn't just return the pooled final predictions:
|
81 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
82 |
+
inputs_embeds=input_embeddings,
|
83 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
84 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
85 |
+
output_attentions=None,
|
86 |
+
output_hidden_states=True, # We want the output embs not the final output
|
87 |
+
return_dict=None,
|
88 |
+
)
|
89 |
+
|
90 |
+
# We're interested in the output hidden state only
|
91 |
+
output = encoder_outputs[0]
|
92 |
+
|
93 |
+
# There is a final layer norm we need to pass these through
|
94 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
95 |
+
|
96 |
+
# And now they're ready!
|
97 |
+
return output
|
98 |
+
|
99 |
+
#Generating an image with these modified embeddings
|
100 |
+
|
101 |
+
def generate_with_embs(text_embeddings, text_input):
|
102 |
+
height = 512 # default height of Stable Diffusion
|
103 |
+
width = 512 # default width of Stable Diffusion
|
104 |
+
num_inference_steps = 10 # Number of denoising steps
|
105 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
106 |
+
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
|
107 |
+
batch_size = 1
|
108 |
+
|
109 |
+
max_length = text_input.input_ids.shape[-1]
|
110 |
+
uncond_input = tokenizer(
|
111 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
112 |
+
)
|
113 |
+
with torch.no_grad():
|
114 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
115 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
116 |
+
|
117 |
+
# Prep Scheduler
|
118 |
+
scheduler.set_timesteps(num_inference_steps)
|
119 |
+
|
120 |
+
# Prep latents
|
121 |
+
latents = torch.randn(
|
122 |
+
(batch_size, unet.config.in_channels, height // 8, width // 8),
|
123 |
+
generator=generator,
|
124 |
+
)
|
125 |
+
latents = latents.to(torch_device)
|
126 |
+
latents = latents * scheduler.init_noise_sigma
|
127 |
+
|
128 |
+
# Loop
|
129 |
+
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
130 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
131 |
+
latent_model_input = torch.cat([latents] * 2)
|
132 |
+
sigma = scheduler.sigmas[i]
|
133 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
134 |
+
|
135 |
+
# predict the noise residual
|
136 |
+
with torch.no_grad():
|
137 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
138 |
+
|
139 |
+
# perform guidance
|
140 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
141 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
142 |
+
|
143 |
+
# compute the previous noisy sample x_t -> x_t-1
|
144 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
145 |
+
|
146 |
+
return latents_to_pil(latents)[0]
|
147 |
+
|
148 |
+
def ref_loss(images,ref_image):
|
149 |
+
# Reference image
|
150 |
+
error = torch.abs(images - ref_image).mean()
|
151 |
+
return error
|
152 |
+
|
153 |
+
def inference(prompt, style_index):
|
154 |
+
|
155 |
+
styles = ['<midjourney-style>', '<hitokomoru-style>','<birb-style>','<summie-style>','<illustration-style>','<m-geo>']
|
156 |
+
embed = ['learned_embeds_m.bin','learned_embeds_h.bin', 'learned_embeds.bin', 'learned_embeds_s.bin','learned_embeds_i.bin','learned_embeds_mg.bin']
|
157 |
+
|
158 |
+
|
159 |
+
# Tokenize
|
160 |
+
text_input = tokenizer(prompt+" .", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
161 |
+
# Access the embedding layer
|
162 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
163 |
+
token_embeddings = token_emb_layer(text_input.input_ids.to(torch_device))
|
164 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
165 |
+
|
166 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
167 |
+
position_embeddings = pos_emb_layer(position_ids)
|
168 |
+
|
169 |
+
## Without any Textual Inversion
|
170 |
+
input_ids = text_input.input_ids.to(torch_device)
|
171 |
+
|
172 |
+
# Get token embeddings
|
173 |
+
token_embeddings = token_emb_layer(input_ids)
|
174 |
+
|
175 |
+
# Combine with pos embs
|
176 |
+
input_embeddings = token_embeddings + position_embeddings
|
177 |
+
|
178 |
+
# Feed through to get final output embs
|
179 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
180 |
+
|
181 |
+
# And generate an image with this:
|
182 |
+
image1 = generate_with_embs(modified_output_embeddings,text_input)
|
183 |
+
|
184 |
+
replace_id=269 #replaced dot with Textual Inversion
|
185 |
+
|
186 |
+
## midjourney-style
|
187 |
+
style = styles[style_index]
|
188 |
+
emb = embed[style_index]
|
189 |
+
|
190 |
+
x_embed = torch.load(emb)
|
191 |
+
|
192 |
+
# The new embedding - our special birb word
|
193 |
+
replacement_token_embedding = x_embed[style].to(torch_device)
|
194 |
+
|
195 |
+
# Insert this into the token embeddings
|
196 |
+
token_embeddings[0, torch.where(input_ids[0]==replace_id)] = replacement_token_embedding.to(torch_device)
|
197 |
+
|
198 |
+
# Combine with pos embs
|
199 |
+
input_embeddings = token_embeddings + position_embeddings
|
200 |
+
|
201 |
+
# Feed through to get final output embs
|
202 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
203 |
+
|
204 |
+
# And generate an image with this:
|
205 |
+
image2 = generate_with_embs(modified_output_embeddings,text_input)
|
206 |
+
|
207 |
+
prompt1 = 'rainbow'
|
208 |
+
|
209 |
+
# Tokenize
|
210 |
+
text_input1 = tokenizer(prompt1, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
211 |
+
|
212 |
+
# Access the embedding layer
|
213 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
214 |
+
|
215 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
216 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
217 |
+
position_embeddings1 = pos_emb_layer(position_ids)
|
218 |
+
|
219 |
+
input_ids1 = text_input1.input_ids.to(torch_device)
|
220 |
+
|
221 |
+
# Get token embeddings
|
222 |
+
token_embeddings1 = token_emb_layer(input_ids1)
|
223 |
+
|
224 |
+
# Combine with pos embs
|
225 |
+
input_embeddings1 = token_embeddings1 + position_embeddings1
|
226 |
+
|
227 |
+
# Feed through to get final output embs
|
228 |
+
modified_output_embeddings1 = get_output_embeds(input_embeddings1)
|
229 |
+
|
230 |
+
# And generate an image with this:
|
231 |
+
ref_image = generate_with_embs(modified_output_embeddings1, text_input1)
|
232 |
+
|
233 |
+
ref_latent = pil_to_latent(ref_image)
|
234 |
+
|
235 |
+
height = 512 # default height of Stable Diffusion
|
236 |
+
width = 512 # default width of Stable Diffusion
|
237 |
+
num_inference_steps = 10 # # Number of denoising steps
|
238 |
+
guidance_scale = 8 # # Scale for classifier-free guidance
|
239 |
+
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
|
240 |
+
batch_size = 1
|
241 |
+
blue_loss_scale = 200 #
|
242 |
+
|
243 |
+
# Prep text
|
244 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
245 |
+
with torch.no_grad():
|
246 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
247 |
+
|
248 |
+
# And the uncond. input as before:
|
249 |
+
max_length = text_input.input_ids.shape[-1]
|
250 |
+
uncond_input = tokenizer(
|
251 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
252 |
+
)
|
253 |
+
with torch.no_grad():
|
254 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
255 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
256 |
+
|
257 |
+
# Prep Scheduler
|
258 |
+
scheduler.set_timesteps(num_inference_steps)
|
259 |
+
|
260 |
+
# Prep latents
|
261 |
+
latents = torch.randn(
|
262 |
+
(batch_size, unet.config.in_channels, height // 8, width // 8),
|
263 |
+
generator=generator,
|
264 |
+
)
|
265 |
+
latents = latents.to(torch_device)
|
266 |
+
latents = latents * scheduler.init_noise_sigma
|
267 |
+
|
268 |
+
# Loop
|
269 |
+
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
270 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
271 |
+
latent_model_input = torch.cat([latents] * 2)
|
272 |
+
sigma = scheduler.sigmas[i]
|
273 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
274 |
+
|
275 |
+
# predict the noise residual
|
276 |
+
with torch.no_grad():
|
277 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
278 |
+
|
279 |
+
# perform CFG
|
280 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
281 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
282 |
+
|
283 |
+
#### ADDITIONAL GUIDANCE ###
|
284 |
+
if i%5 == 0:
|
285 |
+
# Requires grad on the latents
|
286 |
+
latents = latents.detach().requires_grad_()
|
287 |
+
|
288 |
+
# Get the predicted x0:
|
289 |
+
# latents_x0 = latents - sigma * noise_pred
|
290 |
+
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
291 |
+
|
292 |
+
# Decode to image space
|
293 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
294 |
+
|
295 |
+
#ref image
|
296 |
+
with torch.no_grad():
|
297 |
+
ref_images = vae.decode((1 / 0.18215) * ref_latent).sample / 2 + 0.5 # range (0, 1)
|
298 |
+
|
299 |
+
# Calculate loss
|
300 |
+
loss = ref_loss(denoised_images,ref_images) * blue_loss_scale
|
301 |
+
|
302 |
+
# Occasionally print it out
|
303 |
+
# if i%10==0:
|
304 |
+
# print(i, 'loss:', loss.item())
|
305 |
+
|
306 |
+
# Get gradient
|
307 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
308 |
+
|
309 |
+
# Modify the latents based on this gradient
|
310 |
+
latents = latents.detach() - cond_grad * sigma**2
|
311 |
+
scheduler._step_index = scheduler._step_index - 1
|
312 |
+
|
313 |
+
|
314 |
+
# Now step with scheduler
|
315 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
316 |
+
#latents = scheduler.step(noise_pred, t, latents).pred_original_sample
|
317 |
+
|
318 |
+
|
319 |
+
image3 = latents_to_pil(latents)[0]
|
320 |
+
|
321 |
+
return (image1, 'Original Image'), (image2, 'Styled Image'), (image3, 'After Textual Inversion')
|
322 |
+
|
323 |
+
# Gradio App with num_inference_steps=10
|
324 |
+
|
325 |
+
title="Textual Inversion in Stable Diffusion"
|
326 |
+
description="<p style='text-align: center;'>Textual Inversion in Stable Diffusion.</b></p>"
|
327 |
+
gallery = gr.Gallery(label="Generated images", show_label=True, elem_id="gallery", columns=3).style(grid=[2], height="auto")
|
328 |
+
|
329 |
+
gr.Interface(fn=inference, inputs=["text",
|
330 |
+
|
331 |
+
gr.Radio([('<midjourney-style>',0), ('<hitokomoru-style>',1),('<birb-style>',2),
|
332 |
+
('<summie-style>',3),('<illustration-style>',4),('<m-geo>',5)] , value = 0, label = 'Styles')],
|
333 |
+
outputs = gallery, title = title,
|
334 |
+
examples = [['a girl playing in snow',0],
|
335 |
+
['an oil painting of a goddess',1],
|
336 |
+
['a rabbit on the moon', 5 ]], ).launch(debug=True)
|
337 |
+
|
learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2e23a8f2d3628ed77acb8151751ecd4efc4017e8da86bc29af10f855ca308d9
|
3 |
+
size 3819
|
learned_embeds_b.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:879da7c2e8287ab071af22a81dc978e5140905d0d802671750112ff47ba391c6
|
3 |
+
size 4864
|
learned_embeds_c.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdcc3699f3ad8b464e63e1360d5acdd0d5fdf97f74c06962dbb08e60fb576ff
|
3 |
+
size 3840
|
learned_embeds_c1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:278197c4384b90db9faca3b1aef796fa2e305c9b5eb8840289207a71a8f4129c
|
3 |
+
size 3819
|
learned_embeds_h.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f81a9c575e329e08a24e08f47ae73c5b50dec4bcb557974552549b45e2d1b0d4
|
3 |
+
size 3819
|
learned_embeds_i.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44d65046c071e37f75f31a7a81a34c50a96080e8a3aedc7cda1094dae5d385f0
|
3 |
+
size 3819
|
learned_embeds_m.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4865a5d2ecd012985940748023fd80e4fd299837f1dccedb85ee83be5bb1f957
|
3 |
+
size 3819
|
learned_embeds_mg.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48f9968e6236292263f84f83cc730fe0c37d797415649b2941c0a9a0ca6c2c51
|
3 |
+
size 3819
|
learned_embeds_s.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf60867553500a6822e9752ed6ee4f816299069623fc6aa428da9ff81ad3bfec
|
3 |
+
size 3819
|