File size: 3,022 Bytes
ade70cf
1d51385
d69fd19
d7f29ce
ade70cf
1d51385
d7f29ce
d9cf2fe
d7f29ce
ade70cf
 
d7f29ce
ade70cf
1d51385
d7f29ce
39ae23a
 
ade70cf
50fae8a
d502400
50fae8a
ade70cf
d256f3b
50fae8a
ca16909
d256f3b
 
 
beec895
50fae8a
1d51385
 
 
 
69958d1
ade70cf
 
 
 
 
 
 
 
 
 
1d51385
 
ade70cf
 
c8f76e0
 
 
6172e67
c8f76e0
 
 
 
6172e67
 
 
 
 
 
 
 
 
 
 
 
1d51385
6172e67
 
 
 
 
 
 
 
 
 
 
 
 
c8f76e0
6172e67
 
 
 
 
 
c8f76e0
6172e67
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces

import requests
import copy

from PIL import Image, ImageDraw, ImageFont 
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches

import random
import numpy as np

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()

processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)


DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"

colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
            'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']

@spaces.GPU
def run_example(task_prompt, image, text_input=None):
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text,
        task=task_prompt,
        image_size=(image.width, image.height)
    )
    return parsed_answer

def process_image(image, text_input=None):
    image = Image.fromarray(image)  # Convert NumPy array to PIL Image
    task_prompt = '<DocVQA>'
    results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
    return results, None


css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="Florence-2 Image Captioning"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                text_input = gr.Textbox(label="Text Input (optional)")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                output_img = gr.Image(label="Output Image")

        gr.Examples(
            examples=[
                ["image1.jpg", 'Object Detection'],
                ["image2.jpg", 'OCR with Region']
            ],
            inputs=[input_img],
            outputs=[output_text, output_img],
            fn=process_image,
            cache_examples=True,
            label='Try examples'
        )

        submit_btn.click(process_image, [input_img, text_input], [output_text, output_img])

demo.launch(debug=True)