|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import spaces |
|
|
|
import requests |
|
import copy |
|
|
|
from PIL import Image, ImageDraw, ImageFont |
|
import io |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
|
|
import random |
|
import numpy as np |
|
|
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
models = { |
|
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(), |
|
'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(), |
|
'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(), |
|
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(), |
|
} |
|
|
|
processors = { |
|
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), |
|
'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True), |
|
'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True), |
|
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True), |
|
} |
|
|
|
|
|
DESCRIPTION = "# [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)" |
|
|
|
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', |
|
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] |
|
|
|
def fig_to_pil(fig): |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
return Image.open(buf) |
|
|
|
@spaces.GPU |
|
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'): |
|
model = models[model_id] |
|
processor = processors[model_id] |
|
if text_input is None: |
|
prompt = task_prompt |
|
else: |
|
prompt = task_prompt + text_input |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, |
|
task=task_prompt, |
|
image_size=(image.width, image.height) |
|
) |
|
return parsed_answer |
|
|
|
def plot_bbox(image, data): |
|
fig, ax = plt.subplots() |
|
ax.imshow(image) |
|
for bbox, label in zip(data['bboxes'], data['labels']): |
|
x1, y1, x2, y2 = bbox |
|
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') |
|
ax.add_patch(rect) |
|
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) |
|
ax.axis('off') |
|
return fig |
|
|
|
def draw_polygons(image, prediction, fill_mask=False): |
|
|
|
draw = ImageDraw.Draw(image) |
|
scale = 1 |
|
for polygons, label in zip(prediction['polygons'], prediction['labels']): |
|
color = random.choice(colormap) |
|
fill_color = random.choice(colormap) if fill_mask else None |
|
for _polygon in polygons: |
|
_polygon = np.array(_polygon).reshape(-1, 2) |
|
if len(_polygon) < 3: |
|
print('Invalid polygon:', _polygon) |
|
continue |
|
_polygon = (_polygon * scale).reshape(-1).tolist() |
|
if fill_mask: |
|
draw.polygon(_polygon, outline=color, fill=fill_color) |
|
else: |
|
draw.polygon(_polygon, outline=color) |
|
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color) |
|
return image |
|
|
|
def convert_to_od_format(data): |
|
bboxes = data.get('bboxes', []) |
|
labels = data.get('bboxes_labels', []) |
|
od_results = { |
|
'bboxes': bboxes, |
|
'labels': labels |
|
} |
|
return od_results |
|
|
|
def draw_ocr_bboxes(image, prediction): |
|
scale = 1 |
|
draw = ImageDraw.Draw(image) |
|
bboxes, labels = prediction['quad_boxes'], prediction['labels'] |
|
for box, label in zip(bboxes, labels): |
|
color = random.choice(colormap) |
|
new_box = (np.array(box) * scale).tolist() |
|
draw.polygon(new_box, width=3, outline=color) |
|
draw.text((new_box[0]+8, new_box[1]+2), |
|
"{}".format(label), |
|
align="right", |
|
fill=color) |
|
return image |
|
|
|
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'): |
|
image = Image.fromarray(image) |
|
if task_prompt == 'Caption': |
|
task_prompt = '<CAPTION>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
return results, None |
|
elif task_prompt == 'Detailed Caption': |
|
task_prompt = '<DETAILED_CAPTION>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
return results, None |
|
elif task_prompt == 'More Detailed Caption': |
|
task_prompt = '<MORE_DETAILED_CAPTION>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
return results, None |
|
elif task_prompt == 'Object Detection': |
|
task_prompt = '<OD>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
fig = plot_bbox(image, results['<OD>']) |
|
return results, fig_to_pil(fig) |
|
elif task_prompt == 'Dense Region Caption': |
|
task_prompt = '<DENSE_REGION_CAPTION>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>']) |
|
return results, fig_to_pil(fig) |
|
elif task_prompt == 'Region Proposal': |
|
task_prompt = '<REGION_PROPOSAL>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
fig = plot_bbox(image, results['<REGION_PROPOSAL>']) |
|
return results, fig_to_pil(fig) |
|
elif task_prompt == 'Caption to Phrase Grounding': |
|
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>']) |
|
return results, fig_to_pil(fig) |
|
elif task_prompt == 'Referring Expression Segmentation': |
|
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
output_image = copy.deepcopy(image) |
|
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True) |
|
return results, output_image |
|
elif task_prompt == 'Region to Segmentation': |
|
task_prompt = '<REGION_TO_SEGMENTATION>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
output_image = copy.deepcopy(image) |
|
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True) |
|
return results, output_image |
|
elif task_prompt == 'Open Vocabulary Detection': |
|
task_prompt = '<OPEN_VOCABULARY_DETECTION>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>']) |
|
fig = plot_bbox(image, bbox_results) |
|
return results, fig_to_pil(fig) |
|
elif task_prompt == 'Region to Category': |
|
task_prompt = '<REGION_TO_CATEGORY>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
return results, None |
|
elif task_prompt == 'Region to Description': |
|
task_prompt = '<REGION_TO_DESCRIPTION>' |
|
results = run_example(task_prompt, image, text_input, model_id) |
|
return results, None |
|
elif task_prompt == 'OCR': |
|
task_prompt = '<OCR>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
return results, None |
|
elif task_prompt == 'OCR with Region': |
|
task_prompt = '<OCR_WITH_REGION>' |
|
results = run_example(task_prompt, image, model_id=model_id) |
|
output_image = copy.deepcopy(image) |
|
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>']) |
|
return results, output_image |
|
else: |
|
return "", None |
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="Florence-2 Image Captioning"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large') |
|
task_prompt = gr.Dropdown(choices=[ |
|
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection', |
|
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding', |
|
'Referring Expression Segmentation', 'Region to Segmentation', |
|
'Open Vocabulary Detection', 'Region to Category', 'Region to Description', |
|
'OCR', 'OCR with Region' |
|
], label="Task Prompt", value= 'Caption') |
|
text_input = gr.Textbox(label="Text Input (optional)") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
output_img = gr.Image(label="Output Image") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["image1.jpg", 'Object Detection'], |
|
["image2.jpg", 'OCR with Region'] |
|
], |
|
inputs=[input_img, task_prompt], |
|
outputs=[output_text, output_img], |
|
fn=process_image, |
|
cache_examples=True, |
|
label='Try examples' |
|
) |
|
|
|
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img]) |
|
|
|
demo.launch(debug=True) |