|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import spaces |
|
|
|
|
|
from PIL import Image |
|
|
|
|
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval() |
|
|
|
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True) |
|
|
|
|
|
TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)" |
|
DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)." |
|
|
|
|
|
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', |
|
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] |
|
|
|
@spaces.GPU |
|
def run_example(task_prompt, image, text_input=None): |
|
if text_input is None: |
|
prompt = task_prompt |
|
else: |
|
prompt = task_prompt + text_input |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, |
|
task=task_prompt, |
|
image_size=(image.width, image.height) |
|
) |
|
return parsed_answer |
|
|
|
def process_image(image, text_input=None): |
|
image = Image.fromarray(image) |
|
task_prompt = '<DocVQA>' |
|
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "") |
|
return results |
|
|
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(TITLE) |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="Florence-2 Image Captioning"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
text_input = gr.Textbox(label="Text Input (optional)") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["idefics2_architecture.png", 'How many tokens per image does it use?'], |
|
["idefics2_architecture.png", "What type of encoder does the model use?"], |
|
["idefics2_architecture.png", 'Up to which size can the images be?'], |
|
["image.jpg", "What's the share of Industry Switchers Gained?"] |
|
], |
|
inputs=[input_img, text_input], |
|
outputs=[output_text], |
|
fn=process_image, |
|
cache_examples=True, |
|
label='Try the examples below' |
|
) |
|
|
|
submit_btn.click(process_image, [input_img, text_input], [output_text]) |
|
|
|
demo.launch(debug=True) |