Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
5 |
from transformers import AutoModelForMultipleChoice, AutoTokenizer
|
6 |
|
7 |
model_id = "deepset/deberta-v3-large-squad2"
|
@@ -11,36 +10,51 @@ model = AutoModelForMultipleChoice.from_pretrained(model_id)
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
|
13 |
# Define the preprocessing function
|
14 |
-
def preprocess(
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Define the prediction function
|
23 |
def predict(data):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
# Create the Gradio interface
|
34 |
iface = gr.Interface(
|
35 |
fn=predict,
|
36 |
-
inputs=
|
37 |
-
outputs=
|
38 |
live=True,
|
39 |
-
examples=[
|
40 |
-
{"prompt": "This is the prompt", "A": "Option A text", "B": "Option B text", "C": "Option C text", "D": "Option D text", "E": "Option E text"}
|
41 |
-
],
|
42 |
title="LLM Science Exam Demo",
|
43 |
-
description="Enter
|
44 |
)
|
45 |
|
46 |
# Run the interface
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
from transformers import AutoModelForMultipleChoice, AutoTokenizer
|
5 |
|
6 |
model_id = "deepset/deberta-v3-large-squad2"
|
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
|
12 |
# Define the preprocessing function
|
13 |
+
def preprocess(text):
|
14 |
+
# Split the input text into lines
|
15 |
+
lines = text.strip().split("\n")
|
16 |
+
samples = []
|
17 |
+
|
18 |
+
# Loop through each line and create a sample
|
19 |
+
for line in lines:
|
20 |
+
parts = line.split("\t")
|
21 |
+
if len(parts) >= 6:
|
22 |
+
sample = {
|
23 |
+
"prompt": parts[0],
|
24 |
+
"A": parts[1],
|
25 |
+
"B": parts[2],
|
26 |
+
"C": parts[3],
|
27 |
+
"D": parts[4],
|
28 |
+
"E": parts[5]
|
29 |
+
}
|
30 |
+
samples.append(sample)
|
31 |
+
|
32 |
+
return samples
|
33 |
|
34 |
# Define the prediction function
|
35 |
def predict(data):
|
36 |
+
results = []
|
37 |
+
for sample in data:
|
38 |
+
first_sentences = [sample["prompt"]] * 5
|
39 |
+
second_sentences = [sample[option] for option in "ABCDE"]
|
40 |
+
tokenized_sentences = tokenizer(first_sentences, second_sentences, truncation=True, padding=True, return_tensors="pt")
|
41 |
+
inputs = tokenized_sentences["input_ids"]
|
42 |
+
masks = tokenized_sentences["attention_mask"]
|
43 |
+
with torch.no_grad():
|
44 |
+
logits = model(inputs, attention_mask=masks).logits
|
45 |
+
predictions_as_ids = torch.argsort(-logits, dim=1)
|
46 |
+
answers = np.array(list("ABCDE"))[predictions_as_ids.tolist()]
|
47 |
+
results.append(["".join(i) for i in answers[:, :3]])
|
48 |
+
return results
|
49 |
+
|
50 |
# Create the Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
fn=predict,
|
53 |
+
inputs=gr.inputs.Textbox(placeholder="Paste multiple-choice questions (prompt and options separated by tabs, one question per line) ..."),
|
54 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
55 |
live=True,
|
|
|
|
|
|
|
56 |
title="LLM Science Exam Demo",
|
57 |
+
description="Enter multiple-choice questions (prompt and options) below and get predictions.",
|
58 |
)
|
59 |
|
60 |
# Run the interface
|