File size: 3,900 Bytes
8d9f691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch.utils.data as data
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import random

class BaseDataset(data.Dataset):
    def __init__(self):
        super(BaseDataset, self).__init__()

    def name(self):
        return 'BaseDataset'

    def initialize(self, opt):
        pass

def get_params(opt, size):
    w, h = size
    new_h = h
    new_w = w
    if opt.resize_or_crop == 'resize_and_crop':
        new_h = new_w = opt.loadSize            
    elif opt.resize_or_crop == 'scale_width_and_crop':
        new_w = opt.loadSize
        new_h = opt.loadSize * h // w

    x = random.randint(0, np.maximum(0, new_w - opt.fineSize))
    y = random.randint(0, np.maximum(0, new_h - opt.fineSize))

    flip = 0
    return {'crop_pos': (x, y), 'flip': flip}

def get_transform_resize(opt, params, method=Image.BICUBIC, normalize=True):
    transform_list = []
    transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.loadSize, method)))
    osize = [256,192]
    transform_list.append(transforms.Scale(osize, method))
    if 'crop' in opt.resize_or_crop:
        transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.fineSize)))

    if opt.resize_or_crop == 'none':
        base = float(2 ** opt.n_downsample_global)
        if opt.netG == 'local':
            base *= (2 ** opt.n_local_enhancers)
        transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))

    transform_list += [transforms.ToTensor()]

    if normalize:
        transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)

def get_transform(opt, params, method=Image.BICUBIC, normalize=True):
    transform_list = []
    if 'resize' in opt.resize_or_crop:
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, method))   
    elif 'scale_width' in opt.resize_or_crop:
        transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.loadSize, method)))
        osize = [256,192]
        transform_list.append(transforms.Scale(osize, method))  
    if 'crop' in opt.resize_or_crop:
        transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.fineSize)))

    if opt.resize_or_crop == 'none':
        base = float(16)
        transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))

    transform_list += [transforms.ToTensor()]

    if normalize:
        transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)

def normalize():    
    return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

def __make_power_2(img, base, method=Image.BICUBIC):
    ow, oh = img.size        
    h = int(round(oh / base) * base)
    w = int(round(ow / base) * base)
    if (h == oh) and (w == ow):
        return img
    return img.resize((w, h), method)

def __scale_width(img, target_width, method=Image.BICUBIC):
    ow, oh = img.size
    if (ow == target_width):
        return img    
    w = target_width
    h = int(target_width * oh / ow)    
    return img.resize((w, h), method)

def __crop(img, pos, size):
    ow, oh = img.size
    x1, y1 = pos
    tw = th = size
    if (ow > tw or oh > th):        
        return img.crop((x1, y1, x1 + tw, y1 + th))
    return img

def __flip(img, flip):
    if flip:
        return img.transpose(Image.FLIP_LEFT_RIGHT)
    return img