|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .correlation import correlation |
|
|
|
def apply_offset(offset): |
|
|
|
sizes = list(offset.size()[2:]) |
|
grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes]) |
|
grid_list = reversed(grid_list) |
|
|
|
grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...] |
|
for dim, grid in enumerate(grid_list)] |
|
|
|
grid_list = [grid / ((size - 1.0) / 2.0) - 1.0 |
|
for grid, size in zip(grid_list, reversed(sizes))] |
|
|
|
return torch.stack(grid_list, dim=-1) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super(ResBlock, self).__init__() |
|
self.block = nn.Sequential( |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) + x |
|
|
|
|
|
class DownSample(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(DownSample, self).__init__() |
|
self.block= nn.Sequential( |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
|
|
class FeatureEncoder(nn.Module): |
|
def __init__(self, in_channels, chns=[64,128,256,256,256]): |
|
super(FeatureEncoder, self).__init__() |
|
self.encoders = [] |
|
for i, out_chns in enumerate(chns): |
|
if i == 0: |
|
encoder = nn.Sequential(DownSample(in_channels, out_chns), |
|
ResBlock(out_chns), |
|
ResBlock(out_chns)) |
|
else: |
|
encoder = nn.Sequential(DownSample(chns[i-1], out_chns), |
|
ResBlock(out_chns), |
|
ResBlock(out_chns)) |
|
|
|
self.encoders.append(encoder) |
|
|
|
self.encoders = nn.ModuleList(self.encoders) |
|
|
|
|
|
def forward(self, x): |
|
encoder_features = [] |
|
for encoder in self.encoders: |
|
x = encoder(x) |
|
encoder_features.append(x) |
|
return encoder_features |
|
|
|
class RefinePyramid(nn.Module): |
|
def __init__(self, chns=[64,128,256,256,256], fpn_dim=256): |
|
super(RefinePyramid, self).__init__() |
|
self.chns = chns |
|
|
|
self.adaptive = [] |
|
for in_chns in list(reversed(chns)): |
|
adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1) |
|
self.adaptive.append(adaptive_layer) |
|
self.adaptive = nn.ModuleList(self.adaptive) |
|
|
|
self.smooth = [] |
|
for i in range(len(chns)): |
|
smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1) |
|
self.smooth.append(smooth_layer) |
|
self.smooth = nn.ModuleList(self.smooth) |
|
|
|
def forward(self, x): |
|
conv_ftr_list = x |
|
|
|
feature_list = [] |
|
last_feature = None |
|
for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))): |
|
feature = self.adaptive[i](conv_ftr) |
|
|
|
if last_feature is not None: |
|
feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest') |
|
|
|
feature = self.smooth[i](feature) |
|
last_feature = feature |
|
feature_list.append(feature) |
|
|
|
return tuple(reversed(feature_list)) |
|
|
|
|
|
class AFlowNet(nn.Module): |
|
def __init__(self, num_pyramid, fpn_dim=256): |
|
super(AFlowNet, self).__init__() |
|
self.netMain = [] |
|
self.netRefine = [] |
|
for i in range(num_pyramid): |
|
netMain_layer = torch.nn.Sequential( |
|
torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
netRefine_layer = torch.nn.Sequential( |
|
torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1) |
|
) |
|
self.netMain.append(netMain_layer) |
|
self.netRefine.append(netRefine_layer) |
|
|
|
self.netMain = nn.ModuleList(self.netMain) |
|
self.netRefine = nn.ModuleList(self.netRefine) |
|
|
|
|
|
def forward(self, x, x_warps, x_conds, warp_feature=True): |
|
last_flow = None |
|
|
|
for i in range(len(x_warps)): |
|
x_warp = x_warps[len(x_warps) - 1 - i] |
|
x_cond = x_conds[len(x_warps) - 1 - i] |
|
|
|
if last_flow is not None and warp_feature: |
|
x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1), |
|
mode='bilinear', padding_mode='border') |
|
else: |
|
x_warp_after = x_warp |
|
|
|
tenCorrelation = F.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=x_warp_after, tenSecond=x_cond, intStride=1), negative_slope=0.1, inplace=False) |
|
flow = self.netMain[i](tenCorrelation) |
|
flow = apply_offset(flow) |
|
|
|
if last_flow is not None: |
|
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') |
|
else: |
|
flow = flow.permute(0, 3, 1, 2) |
|
|
|
last_flow = flow |
|
x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border') |
|
concat = torch.cat([x_warp,x_cond],1) |
|
flow = self.netRefine[i](concat) |
|
flow = apply_offset(flow) |
|
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') |
|
|
|
last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear') |
|
|
|
x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1), |
|
mode='bilinear', padding_mode='border') |
|
return x_warp, last_flow, |
|
|
|
|
|
class AFWM(nn.Module): |
|
|
|
def __init__(self, opt, input_nc): |
|
super(AFWM, self).__init__() |
|
num_filters = [64,128,256,256,256] |
|
self.image_features = FeatureEncoder(3, num_filters) |
|
self.cond_features = FeatureEncoder(input_nc, num_filters) |
|
self.image_FPN = RefinePyramid(num_filters) |
|
self.cond_FPN = RefinePyramid(num_filters) |
|
self.aflow_net = AFlowNet(len(num_filters)) |
|
|
|
def forward(self, cond_input, image_input): |
|
cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) |
|
image_pyramids = self.image_FPN(self.image_features(image_input)) |
|
|
|
x_warp, last_flow = self.aflow_net(image_input, image_pyramids, cond_pyramids) |
|
|
|
return x_warp, last_flow |
|
|
|
|