import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms import numpy as np import random class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() def name(self): return 'BaseDataset' def initialize(self, opt): pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.resize_or_crop == 'resize_and_crop': new_h = new_w = opt.loadSize elif opt.resize_or_crop == 'scale_width_and_crop': new_w = opt.loadSize new_h = opt.loadSize * h // w x = random.randint(0, np.maximum(0, new_w - opt.fineSize)) y = random.randint(0, np.maximum(0, new_h - opt.fineSize)) flip = 0 return {'crop_pos': (x, y), 'flip': flip} def get_transform_resize(opt, params, method=Image.BICUBIC, normalize=True): transform_list = [] transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.loadSize, method))) osize = [256,192] transform_list.append(transforms.Scale(osize, method)) if 'crop' in opt.resize_or_crop: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.fineSize))) if opt.resize_or_crop == 'none': base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def get_transform(opt, params, method=Image.BICUBIC, normalize=True): transform_list = [] if 'resize' in opt.resize_or_crop: osize = [opt.loadSize, opt.loadSize] transform_list.append(transforms.Scale(osize, method)) elif 'scale_width' in opt.resize_or_crop: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.loadSize, method))) osize = [256,192] transform_list.append(transforms.Scale(osize, method)) if 'crop' in opt.resize_or_crop: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.fineSize))) if opt.resize_or_crop == 'none': base = float(16) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def normalize(): return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) def __scale_width(img, target_width, method=Image.BICUBIC): ow, oh = img.size if (ow == target_width): return img w = target_width h = int(target_width * oh / ow) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img