import time from options.test_options import TestOptions from data.data_loader_test import CreateDataLoader from models.networks import ResUnetGenerator, load_checkpoint from models.afwm import AFWM import torch.nn as nn import os import numpy as np import torch import cv2 import torch.nn.functional as F from tqdm.auto import tqdm opt = TestOptions().parse() # list human-cloth pairs with open('demo.txt', 'w') as file: lines = [f'input.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')] file.writelines(lines) data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('[INFO] Data Loaded') warp_model = AFWM(opt, 3) warp_model.eval() load_checkpoint(warp_model, opt.warp_checkpoint) print('[INFO] Warp Model Loaded') gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d) gen_model.eval() load_checkpoint(gen_model, opt.gen_checkpoint) print('[INFO] Gen Model Loaded') def get_result_images(): result_images = [] for i, data in tqdm(enumerate(dataset)): real_image = data['image'] clothes = data['clothes'] ##edge is extracted from the clothes image with the built-in function in python edge = data['edge'] edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int)) clothes = clothes * edge print(clothes.device, edge.device) flow_out = warp_model(real_image, clothes) warped_cloth, last_flow, = flow_out warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros') gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1) gen_outputs = gen_model(gen_inputs) p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1) p_rendered = torch.tanh(p_rendered) m_composite = torch.sigmoid(m_composite) m_composite = m_composite * warped_edge p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite) a = real_image.float().cuda() b= clothes.cuda() c = p_tryon combine = torch.cat([b[0], c[0]], 2).squeeze() cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy() + 1) / 2 rgb = (cv_img * 255).astype(np.uint8) result_images.append(rgb) return result_images get_result_images()