File size: 29,005 Bytes
40dfdfc
 
53ec2c6
40dfdfc
 
 
 
 
 
 
 
 
70f7a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ec2c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
---
title: ERA SESSION13
emoji: πŸ”₯
colorFrom: indigo
colorTo: indigo
sdk: gradio
sdk_version: 3.40.1
app_file: app.py
pinned: false
license: mit
---

# ERA-SESSION13 YoloV3 with Pytorch Lightning & Gradio

HF Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13

### Achieved:
1. **Training Loss: 3.680** 
2. **Validation Loss: 4.940** 
3. **Class accuracy: 81.601883%** 
4. **No obj accuracy: 97.991463%** 
5. **Obj accuracy: 75.976616%**
6. **MAP: 0.4366795**
  
### Results
![image](https://github.com/RaviNaik/ERA-SESSION13/blob/main/yolo_results.png)

### Gradio App
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/95335687-e717-4467-bcb1-227a79dd5c3f)
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3ab67d32-38e6-436a-86d4-b76b5bd52a77)

### Model Summary
```python
    | Name                       | Type              | Params
-------------------------------------------------------------------
0   | loss_fn                    | YoloLoss          | 0     
1   | loss_fn.mse                | MSELoss           | 0     
2   | loss_fn.bce                | BCEWithLogitsLoss | 0     
3   | loss_fn.entropy            | CrossEntropyLoss  | 0     
4   | loss_fn.sigmoid            | Sigmoid           | 0     
5   | layers                     | ModuleList        | 61.6 M
6   | layers.0                   | CNNBlock          | 928   
7   | layers.0.conv              | Conv2d            | 864   
8   | layers.0.bn                | BatchNorm2d       | 64    
9   | layers.0.leaky             | LeakyReLU         | 0     
10  | layers.1                   | CNNBlock          | 18.6 K
11  | layers.1.conv              | Conv2d            | 18.4 K
12  | layers.1.bn                | BatchNorm2d       | 128   
13  | layers.1.leaky             | LeakyReLU         | 0     
14  | layers.2                   | ResidualBlock     | 20.7 K
15  | layers.2.layers            | ModuleList        | 20.7 K
16  | layers.2.layers.0          | Sequential        | 20.7 K
17  | layers.2.layers.0.0        | CNNBlock          | 2.1 K 
18  | layers.2.layers.0.0.conv   | Conv2d            | 2.0 K 
19  | layers.2.layers.0.0.bn     | BatchNorm2d       | 64    
20  | layers.2.layers.0.0.leaky  | LeakyReLU         | 0     
21  | layers.2.layers.0.1        | CNNBlock          | 18.6 K
22  | layers.2.layers.0.1.conv   | Conv2d            | 18.4 K
23  | layers.2.layers.0.1.bn     | BatchNorm2d       | 128   
24  | layers.2.layers.0.1.leaky  | LeakyReLU         | 0     
25  | layers.3                   | CNNBlock          | 74.0 K
26  | layers.3.conv              | Conv2d            | 73.7 K
27  | layers.3.bn                | BatchNorm2d       | 256   
28  | layers.3.leaky             | LeakyReLU         | 0     
29  | layers.4                   | ResidualBlock     | 164 K 
30  | layers.4.layers            | ModuleList        | 164 K 
31  | layers.4.layers.0          | Sequential        | 82.3 K
32  | layers.4.layers.0.0        | CNNBlock          | 8.3 K 
33  | layers.4.layers.0.0.conv   | Conv2d            | 8.2 K 
34  | layers.4.layers.0.0.bn     | BatchNorm2d       | 128   
35  | layers.4.layers.0.0.leaky  | LeakyReLU         | 0     
36  | layers.4.layers.0.1        | CNNBlock          | 74.0 K
37  | layers.4.layers.0.1.conv   | Conv2d            | 73.7 K
38  | layers.4.layers.0.1.bn     | BatchNorm2d       | 256   
39  | layers.4.layers.0.1.leaky  | LeakyReLU         | 0     
40  | layers.4.layers.1          | Sequential        | 82.3 K
41  | layers.4.layers.1.0        | CNNBlock          | 8.3 K 
42  | layers.4.layers.1.0.conv   | Conv2d            | 8.2 K 
43  | layers.4.layers.1.0.bn     | BatchNorm2d       | 128   
44  | layers.4.layers.1.0.leaky  | LeakyReLU         | 0     
45  | layers.4.layers.1.1        | CNNBlock          | 74.0 K
46  | layers.4.layers.1.1.conv   | Conv2d            | 73.7 K
47  | layers.4.layers.1.1.bn     | BatchNorm2d       | 256   
48  | layers.4.layers.1.1.leaky  | LeakyReLU         | 0     
49  | layers.5                   | CNNBlock          | 295 K 
50  | layers.5.conv              | Conv2d            | 294 K 
51  | layers.5.bn                | BatchNorm2d       | 512   
52  | layers.5.leaky             | LeakyReLU         | 0     
53  | layers.6                   | ResidualBlock     | 2.6 M 
54  | layers.6.layers            | ModuleList        | 2.6 M 
55  | layers.6.layers.0          | Sequential        | 328 K 
56  | layers.6.layers.0.0        | CNNBlock          | 33.0 K
57  | layers.6.layers.0.0.conv   | Conv2d            | 32.8 K
58  | layers.6.layers.0.0.bn     | BatchNorm2d       | 256   
59  | layers.6.layers.0.0.leaky  | LeakyReLU         | 0     
60  | layers.6.layers.0.1        | CNNBlock          | 295 K 
61  | layers.6.layers.0.1.conv   | Conv2d            | 294 K 
62  | layers.6.layers.0.1.bn     | BatchNorm2d       | 512   
63  | layers.6.layers.0.1.leaky  | LeakyReLU         | 0     
64  | layers.6.layers.1          | Sequential        | 328 K 
65  | layers.6.layers.1.0        | CNNBlock          | 33.0 K
66  | layers.6.layers.1.0.conv   | Conv2d            | 32.8 K
67  | layers.6.layers.1.0.bn     | BatchNorm2d       | 256   
68  | layers.6.layers.1.0.leaky  | LeakyReLU         | 0     
69  | layers.6.layers.1.1        | CNNBlock          | 295 K 
70  | layers.6.layers.1.1.conv   | Conv2d            | 294 K 
71  | layers.6.layers.1.1.bn     | BatchNorm2d       | 512   
72  | layers.6.layers.1.1.leaky  | LeakyReLU         | 0     
73  | layers.6.layers.2          | Sequential        | 328 K 
74  | layers.6.layers.2.0        | CNNBlock          | 33.0 K
75  | layers.6.layers.2.0.conv   | Conv2d            | 32.8 K
76  | layers.6.layers.2.0.bn     | BatchNorm2d       | 256   
77  | layers.6.layers.2.0.leaky  | LeakyReLU         | 0     
78  | layers.6.layers.2.1        | CNNBlock          | 295 K 
79  | layers.6.layers.2.1.conv   | Conv2d            | 294 K 
80  | layers.6.layers.2.1.bn     | BatchNorm2d       | 512   
81  | layers.6.layers.2.1.leaky  | LeakyReLU         | 0     
82  | layers.6.layers.3          | Sequential        | 328 K 
83  | layers.6.layers.3.0        | CNNBlock          | 33.0 K
84  | layers.6.layers.3.0.conv   | Conv2d            | 32.8 K
85  | layers.6.layers.3.0.bn     | BatchNorm2d       | 256   
86  | layers.6.layers.3.0.leaky  | LeakyReLU         | 0     
87  | layers.6.layers.3.1        | CNNBlock          | 295 K 
88  | layers.6.layers.3.1.conv   | Conv2d            | 294 K 
89  | layers.6.layers.3.1.bn     | BatchNorm2d       | 512   
90  | layers.6.layers.3.1.leaky  | LeakyReLU         | 0     
91  | layers.6.layers.4          | Sequential        | 328 K 
92  | layers.6.layers.4.0        | CNNBlock          | 33.0 K
93  | layers.6.layers.4.0.conv   | Conv2d            | 32.8 K
94  | layers.6.layers.4.0.bn     | BatchNorm2d       | 256   
95  | layers.6.layers.4.0.leaky  | LeakyReLU         | 0     
96  | layers.6.layers.4.1        | CNNBlock          | 295 K 
97  | layers.6.layers.4.1.conv   | Conv2d            | 294 K 
98  | layers.6.layers.4.1.bn     | BatchNorm2d       | 512   
99  | layers.6.layers.4.1.leaky  | LeakyReLU         | 0     
100 | layers.6.layers.5          | Sequential        | 328 K 
101 | layers.6.layers.5.0        | CNNBlock          | 33.0 K
102 | layers.6.layers.5.0.conv   | Conv2d            | 32.8 K
103 | layers.6.layers.5.0.bn     | BatchNorm2d       | 256   
104 | layers.6.layers.5.0.leaky  | LeakyReLU         | 0     
105 | layers.6.layers.5.1        | CNNBlock          | 295 K 
106 | layers.6.layers.5.1.conv   | Conv2d            | 294 K 
107 | layers.6.layers.5.1.bn     | BatchNorm2d       | 512   
108 | layers.6.layers.5.1.leaky  | LeakyReLU         | 0     
109 | layers.6.layers.6          | Sequential        | 328 K 
110 | layers.6.layers.6.0        | CNNBlock          | 33.0 K
111 | layers.6.layers.6.0.conv   | Conv2d            | 32.8 K
112 | layers.6.layers.6.0.bn     | BatchNorm2d       | 256   
113 | layers.6.layers.6.0.leaky  | LeakyReLU         | 0     
114 | layers.6.layers.6.1        | CNNBlock          | 295 K 
115 | layers.6.layers.6.1.conv   | Conv2d            | 294 K 
116 | layers.6.layers.6.1.bn     | BatchNorm2d       | 512   
117 | layers.6.layers.6.1.leaky  | LeakyReLU         | 0     
118 | layers.6.layers.7          | Sequential        | 328 K 
119 | layers.6.layers.7.0        | CNNBlock          | 33.0 K
120 | layers.6.layers.7.0.conv   | Conv2d            | 32.8 K
121 | layers.6.layers.7.0.bn     | BatchNorm2d       | 256   
122 | layers.6.layers.7.0.leaky  | LeakyReLU         | 0     
123 | layers.6.layers.7.1        | CNNBlock          | 295 K 
124 | layers.6.layers.7.1.conv   | Conv2d            | 294 K 
125 | layers.6.layers.7.1.bn     | BatchNorm2d       | 512   
126 | layers.6.layers.7.1.leaky  | LeakyReLU         | 0     
127 | layers.7                   | CNNBlock          | 1.2 M 
128 | layers.7.conv              | Conv2d            | 1.2 M 
129 | layers.7.bn                | BatchNorm2d       | 1.0 K 
130 | layers.7.leaky             | LeakyReLU         | 0     
131 | layers.8                   | ResidualBlock     | 10.5 M
132 | layers.8.layers            | ModuleList        | 10.5 M
133 | layers.8.layers.0          | Sequential        | 1.3 M 
134 | layers.8.layers.0.0        | CNNBlock          | 131 K 
135 | layers.8.layers.0.0.conv   | Conv2d            | 131 K 
136 | layers.8.layers.0.0.bn     | BatchNorm2d       | 512   
137 | layers.8.layers.0.0.leaky  | LeakyReLU         | 0     
138 | layers.8.layers.0.1        | CNNBlock          | 1.2 M 
139 | layers.8.layers.0.1.conv   | Conv2d            | 1.2 M 
140 | layers.8.layers.0.1.bn     | BatchNorm2d       | 1.0 K 
141 | layers.8.layers.0.1.leaky  | LeakyReLU         | 0     
142 | layers.8.layers.1          | Sequential        | 1.3 M 
143 | layers.8.layers.1.0        | CNNBlock          | 131 K 
144 | layers.8.layers.1.0.conv   | Conv2d            | 131 K 
145 | layers.8.layers.1.0.bn     | BatchNorm2d       | 512   
146 | layers.8.layers.1.0.leaky  | LeakyReLU         | 0     
147 | layers.8.layers.1.1        | CNNBlock          | 1.2 M 
148 | layers.8.layers.1.1.conv   | Conv2d            | 1.2 M 
149 | layers.8.layers.1.1.bn     | BatchNorm2d       | 1.0 K 
150 | layers.8.layers.1.1.leaky  | LeakyReLU         | 0     
151 | layers.8.layers.2          | Sequential        | 1.3 M 
152 | layers.8.layers.2.0        | CNNBlock          | 131 K 
153 | layers.8.layers.2.0.conv   | Conv2d            | 131 K 
154 | layers.8.layers.2.0.bn     | BatchNorm2d       | 512   
155 | layers.8.layers.2.0.leaky  | LeakyReLU         | 0     
156 | layers.8.layers.2.1        | CNNBlock          | 1.2 M 
157 | layers.8.layers.2.1.conv   | Conv2d            | 1.2 M 
158 | layers.8.layers.2.1.bn     | BatchNorm2d       | 1.0 K 
159 | layers.8.layers.2.1.leaky  | LeakyReLU         | 0     
160 | layers.8.layers.3          | Sequential        | 1.3 M 
161 | layers.8.layers.3.0        | CNNBlock          | 131 K 
162 | layers.8.layers.3.0.conv   | Conv2d            | 131 K 
163 | layers.8.layers.3.0.bn     | BatchNorm2d       | 512   
164 | layers.8.layers.3.0.leaky  | LeakyReLU         | 0     
165 | layers.8.layers.3.1        | CNNBlock          | 1.2 M 
166 | layers.8.layers.3.1.conv   | Conv2d            | 1.2 M 
167 | layers.8.layers.3.1.bn     | BatchNorm2d       | 1.0 K 
168 | layers.8.layers.3.1.leaky  | LeakyReLU         | 0     
169 | layers.8.layers.4          | Sequential        | 1.3 M 
170 | layers.8.layers.4.0        | CNNBlock          | 131 K 
171 | layers.8.layers.4.0.conv   | Conv2d            | 131 K 
172 | layers.8.layers.4.0.bn     | BatchNorm2d       | 512   
173 | layers.8.layers.4.0.leaky  | LeakyReLU         | 0     
174 | layers.8.layers.4.1        | CNNBlock          | 1.2 M 
175 | layers.8.layers.4.1.conv   | Conv2d            | 1.2 M 
176 | layers.8.layers.4.1.bn     | BatchNorm2d       | 1.0 K 
177 | layers.8.layers.4.1.leaky  | LeakyReLU         | 0     
178 | layers.8.layers.5          | Sequential        | 1.3 M 
179 | layers.8.layers.5.0        | CNNBlock          | 131 K 
180 | layers.8.layers.5.0.conv   | Conv2d            | 131 K 
181 | layers.8.layers.5.0.bn     | BatchNorm2d       | 512   
182 | layers.8.layers.5.0.leaky  | LeakyReLU         | 0     
183 | layers.8.layers.5.1        | CNNBlock          | 1.2 M 
184 | layers.8.layers.5.1.conv   | Conv2d            | 1.2 M 
185 | layers.8.layers.5.1.bn     | BatchNorm2d       | 1.0 K 
186 | layers.8.layers.5.1.leaky  | LeakyReLU         | 0     
187 | layers.8.layers.6          | Sequential        | 1.3 M 
188 | layers.8.layers.6.0        | CNNBlock          | 131 K 
189 | layers.8.layers.6.0.conv   | Conv2d            | 131 K 
190 | layers.8.layers.6.0.bn     | BatchNorm2d       | 512   
191 | layers.8.layers.6.0.leaky  | LeakyReLU         | 0     
192 | layers.8.layers.6.1        | CNNBlock          | 1.2 M 
193 | layers.8.layers.6.1.conv   | Conv2d            | 1.2 M 
194 | layers.8.layers.6.1.bn     | BatchNorm2d       | 1.0 K 
195 | layers.8.layers.6.1.leaky  | LeakyReLU         | 0     
196 | layers.8.layers.7          | Sequential        | 1.3 M 
197 | layers.8.layers.7.0        | CNNBlock          | 131 K 
198 | layers.8.layers.7.0.conv   | Conv2d            | 131 K 
199 | layers.8.layers.7.0.bn     | BatchNorm2d       | 512   
200 | layers.8.layers.7.0.leaky  | LeakyReLU         | 0     
201 | layers.8.layers.7.1        | CNNBlock          | 1.2 M 
202 | layers.8.layers.7.1.conv   | Conv2d            | 1.2 M 
203 | layers.8.layers.7.1.bn     | BatchNorm2d       | 1.0 K 
204 | layers.8.layers.7.1.leaky  | LeakyReLU         | 0     
205 | layers.9                   | CNNBlock          | 4.7 M 
206 | layers.9.conv              | Conv2d            | 4.7 M 
207 | layers.9.bn                | BatchNorm2d       | 2.0 K 
208 | layers.9.leaky             | LeakyReLU         | 0     
209 | layers.10                  | ResidualBlock     | 21.0 M
210 | layers.10.layers           | ModuleList        | 21.0 M
211 | layers.10.layers.0         | Sequential        | 5.2 M 
212 | layers.10.layers.0.0       | CNNBlock          | 525 K 
213 | layers.10.layers.0.0.conv  | Conv2d            | 524 K 
214 | layers.10.layers.0.0.bn    | BatchNorm2d       | 1.0 K 
215 | layers.10.layers.0.0.leaky | LeakyReLU         | 0     
216 | layers.10.layers.0.1       | CNNBlock          | 4.7 M 
217 | layers.10.layers.0.1.conv  | Conv2d            | 4.7 M 
218 | layers.10.layers.0.1.bn    | BatchNorm2d       | 2.0 K 
219 | layers.10.layers.0.1.leaky | LeakyReLU         | 0     
220 | layers.10.layers.1         | Sequential        | 5.2 M 
221 | layers.10.layers.1.0       | CNNBlock          | 525 K 
222 | layers.10.layers.1.0.conv  | Conv2d            | 524 K 
223 | layers.10.layers.1.0.bn    | BatchNorm2d       | 1.0 K 
224 | layers.10.layers.1.0.leaky | LeakyReLU         | 0     
225 | layers.10.layers.1.1       | CNNBlock          | 4.7 M 
226 | layers.10.layers.1.1.conv  | Conv2d            | 4.7 M 
227 | layers.10.layers.1.1.bn    | BatchNorm2d       | 2.0 K 
228 | layers.10.layers.1.1.leaky | LeakyReLU         | 0     
229 | layers.10.layers.2         | Sequential        | 5.2 M 
230 | layers.10.layers.2.0       | CNNBlock          | 525 K 
231 | layers.10.layers.2.0.conv  | Conv2d            | 524 K 
232 | layers.10.layers.2.0.bn    | BatchNorm2d       | 1.0 K 
233 | layers.10.layers.2.0.leaky | LeakyReLU         | 0     
234 | layers.10.layers.2.1       | CNNBlock          | 4.7 M 
235 | layers.10.layers.2.1.conv  | Conv2d            | 4.7 M 
236 | layers.10.layers.2.1.bn    | BatchNorm2d       | 2.0 K 
237 | layers.10.layers.2.1.leaky | LeakyReLU         | 0     
238 | layers.10.layers.3         | Sequential        | 5.2 M 
239 | layers.10.layers.3.0       | CNNBlock          | 525 K 
240 | layers.10.layers.3.0.conv  | Conv2d            | 524 K 
241 | layers.10.layers.3.0.bn    | BatchNorm2d       | 1.0 K 
242 | layers.10.layers.3.0.leaky | LeakyReLU         | 0     
243 | layers.10.layers.3.1       | CNNBlock          | 4.7 M 
244 | layers.10.layers.3.1.conv  | Conv2d            | 4.7 M 
245 | layers.10.layers.3.1.bn    | BatchNorm2d       | 2.0 K 
246 | layers.10.layers.3.1.leaky | LeakyReLU         | 0     
247 | layers.11                  | CNNBlock          | 525 K 
248 | layers.11.conv             | Conv2d            | 524 K 
249 | layers.11.bn               | BatchNorm2d       | 1.0 K 
250 | layers.11.leaky            | LeakyReLU         | 0     
251 | layers.12                  | CNNBlock          | 4.7 M 
252 | layers.12.conv             | Conv2d            | 4.7 M 
253 | layers.12.bn               | BatchNorm2d       | 2.0 K 
254 | layers.12.leaky            | LeakyReLU         | 0     
255 | layers.13                  | ResidualBlock     | 5.2 M 
256 | layers.13.layers           | ModuleList        | 5.2 M 
257 | layers.13.layers.0         | Sequential        | 5.2 M 
258 | layers.13.layers.0.0       | CNNBlock          | 525 K 
259 | layers.13.layers.0.0.conv  | Conv2d            | 524 K 
260 | layers.13.layers.0.0.bn    | BatchNorm2d       | 1.0 K 
261 | layers.13.layers.0.0.leaky | LeakyReLU         | 0     
262 | layers.13.layers.0.1       | CNNBlock          | 4.7 M 
263 | layers.13.layers.0.1.conv  | Conv2d            | 4.7 M 
264 | layers.13.layers.0.1.bn    | BatchNorm2d       | 2.0 K 
265 | layers.13.layers.0.1.leaky | LeakyReLU         | 0     
266 | layers.14                  | CNNBlock          | 525 K 
267 | layers.14.conv             | Conv2d            | 524 K 
268 | layers.14.bn               | BatchNorm2d       | 1.0 K 
269 | layers.14.leaky            | LeakyReLU         | 0     
270 | layers.15                  | ScalePrediction   | 4.8 M 
271 | layers.15.pred             | Sequential        | 4.8 M 
272 | layers.15.pred.0           | CNNBlock          | 4.7 M 
273 | layers.15.pred.0.conv      | Conv2d            | 4.7 M 
274 | layers.15.pred.0.bn        | BatchNorm2d       | 2.0 K 
275 | layers.15.pred.0.leaky     | LeakyReLU         | 0     
276 | layers.15.pred.1           | CNNBlock          | 77.0 K
277 | layers.15.pred.1.conv      | Conv2d            | 76.9 K
278 | layers.15.pred.1.bn        | BatchNorm2d       | 150   
279 | layers.15.pred.1.leaky     | LeakyReLU         | 0     
280 | layers.16                  | CNNBlock          | 131 K 
281 | layers.16.conv             | Conv2d            | 131 K 
282 | layers.16.bn               | BatchNorm2d       | 512   
283 | layers.16.leaky            | LeakyReLU         | 0     
284 | layers.17                  | Upsample          | 0     
285 | layers.18                  | CNNBlock          | 197 K 
286 | layers.18.conv             | Conv2d            | 196 K 
287 | layers.18.bn               | BatchNorm2d       | 512   
288 | layers.18.leaky            | LeakyReLU         | 0     
289 | layers.19                  | CNNBlock          | 1.2 M 
290 | layers.19.conv             | Conv2d            | 1.2 M 
291 | layers.19.bn               | BatchNorm2d       | 1.0 K 
292 | layers.19.leaky            | LeakyReLU         | 0     
293 | layers.20                  | ResidualBlock     | 1.3 M 
294 | layers.20.layers           | ModuleList        | 1.3 M 
295 | layers.20.layers.0         | Sequential        | 1.3 M 
296 | layers.20.layers.0.0       | CNNBlock          | 131 K 
297 | layers.20.layers.0.0.conv  | Conv2d            | 131 K 
298 | layers.20.layers.0.0.bn    | BatchNorm2d       | 512   
299 | layers.20.layers.0.0.leaky | LeakyReLU         | 0     
300 | layers.20.layers.0.1       | CNNBlock          | 1.2 M 
301 | layers.20.layers.0.1.conv  | Conv2d            | 1.2 M 
302 | layers.20.layers.0.1.bn    | BatchNorm2d       | 1.0 K 
303 | layers.20.layers.0.1.leaky | LeakyReLU         | 0     
304 | layers.21                  | CNNBlock          | 131 K 
305 | layers.21.conv             | Conv2d            | 131 K 
306 | layers.21.bn               | BatchNorm2d       | 512   
307 | layers.21.leaky            | LeakyReLU         | 0     
308 | layers.22                  | ScalePrediction   | 1.2 M 
309 | layers.22.pred             | Sequential        | 1.2 M 
310 | layers.22.pred.0           | CNNBlock          | 1.2 M 
311 | layers.22.pred.0.conv      | Conv2d            | 1.2 M 
312 | layers.22.pred.0.bn        | BatchNorm2d       | 1.0 K 
313 | layers.22.pred.0.leaky     | LeakyReLU         | 0     
314 | layers.22.pred.1           | CNNBlock          | 38.6 K
315 | layers.22.pred.1.conv      | Conv2d            | 38.5 K
316 | layers.22.pred.1.bn        | BatchNorm2d       | 150   
317 | layers.22.pred.1.leaky     | LeakyReLU         | 0     
318 | layers.23                  | CNNBlock          | 33.0 K
319 | layers.23.conv             | Conv2d            | 32.8 K
320 | layers.23.bn               | BatchNorm2d       | 256   
321 | layers.23.leaky            | LeakyReLU         | 0     
322 | layers.24                  | Upsample          | 0     
323 | layers.25                  | CNNBlock          | 49.4 K
324 | layers.25.conv             | Conv2d            | 49.2 K
325 | layers.25.bn               | BatchNorm2d       | 256   
326 | layers.25.leaky            | LeakyReLU         | 0     
327 | layers.26                  | CNNBlock          | 295 K 
328 | layers.26.conv             | Conv2d            | 294 K 
329 | layers.26.bn               | BatchNorm2d       | 512   
330 | layers.26.leaky            | LeakyReLU         | 0     
331 | layers.27                  | ResidualBlock     | 328 K 
332 | layers.27.layers           | ModuleList        | 328 K 
333 | layers.27.layers.0         | Sequential        | 328 K 
334 | layers.27.layers.0.0       | CNNBlock          | 33.0 K
335 | layers.27.layers.0.0.conv  | Conv2d            | 32.8 K
336 | layers.27.layers.0.0.bn    | BatchNorm2d       | 256   
337 | layers.27.layers.0.0.leaky | LeakyReLU         | 0     
338 | layers.27.layers.0.1       | CNNBlock          | 295 K 
339 | layers.27.layers.0.1.conv  | Conv2d            | 294 K 
340 | layers.27.layers.0.1.bn    | BatchNorm2d       | 512   
341 | layers.27.layers.0.1.leaky | LeakyReLU         | 0     
342 | layers.28                  | CNNBlock          | 33.0 K
343 | layers.28.conv             | Conv2d            | 32.8 K
344 | layers.28.bn               | BatchNorm2d       | 256   
345 | layers.28.leaky            | LeakyReLU         | 0     
346 | layers.29                  | ScalePrediction   | 314 K 
347 | layers.29.pred             | Sequential        | 314 K 
348 | layers.29.pred.0           | CNNBlock          | 295 K 
349 | layers.29.pred.0.conv      | Conv2d            | 294 K 
350 | layers.29.pred.0.bn        | BatchNorm2d       | 512   
351 | layers.29.pred.0.leaky     | LeakyReLU         | 0     
352 | layers.29.pred.1           | CNNBlock          | 19.4 K
353 | layers.29.pred.1.conv      | Conv2d            | 19.3 K
354 | layers.29.pred.1.bn        | BatchNorm2d       | 150   
355 | layers.29.pred.1.leaky     | LeakyReLU         | 0     
-------------------------------------------------------------------
61.6 M    Trainable params
0         Non-trainable params
61.6 M    Total params
246.506   Total estimated model params size (MB)
```

### LR Finder
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/a6d64f13-a7b7-4e17-abfc-3ec86e84b710)

### Loss & Accuracy
**Training & Validation Loss:**
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/9391157e-a889-480d-b233-b72e86745245)

**Testing Accuracy:**
```python
0%|          | 0/39 [00:00<?, ?it/s]
  3%|β–Ž         | 1/39 [00:05<03:24,  5.37s/it]
  5%|β–Œ         | 2/39 [00:11<03:32,  5.75s/it]
  8%|β–Š         | 3/39 [00:16<03:14,  5.41s/it]
 10%|β–ˆ         | 4/39 [00:21<03:06,  5.33s/it]
 13%|β–ˆβ–Ž        | 5/39 [00:26<02:55,  5.17s/it]
 15%|β–ˆβ–Œ        | 6/39 [00:31<02:50,  5.16s/it]
 18%|β–ˆβ–Š        | 7/39 [00:36<02:43,  5.11s/it]
 21%|β–ˆβ–ˆ        | 8/39 [00:42<02:48,  5.43s/it]
 23%|β–ˆβ–ˆβ–Ž       | 9/39 [00:48<02:44,  5.47s/it]
 26%|β–ˆβ–ˆβ–Œ       | 10/39 [00:54<02:41,  5.58s/it]
 28%|β–ˆβ–ˆβ–Š       | 11/39 [00:59<02:36,  5.59s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 12/39 [01:05<02:35,  5.77s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 13/39 [01:11<02:28,  5.70s/it]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 14/39 [01:16<02:15,  5.42s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 15/39 [01:21<02:07,  5.30s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 16/39 [01:26<02:02,  5.34s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 17/39 [01:31<01:54,  5.23s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 18/39 [01:36<01:49,  5.22s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 19/39 [01:42<01:43,  5.20s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 20/39 [01:46<01:33,  4.94s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 21/39 [01:50<01:23,  4.64s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 22/39 [01:54<01:14,  4.41s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 23/39 [01:57<01:03,  3.96s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 24/39 [02:00<00:54,  3.66s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 25/39 [02:04<00:55,  3.94s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 26/39 [02:10<00:56,  4.38s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 27/39 [02:14<00:53,  4.47s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 28/39 [02:20<00:52,  4.77s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 29/39 [02:25<00:50,  5.04s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 30/39 [02:31<00:47,  5.25s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 31/39 [02:37<00:42,  5.36s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 32/39 [02:42<00:38,  5.43s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 33/39 [02:47<00:31,  5.24s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 34/39 [02:53<00:26,  5.29s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 35/39 [02:58<00:21,  5.32s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 36/39 [03:03<00:15,  5.23s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 37/39 [03:08<00:10,  5.26s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 38/39 [03:14<00:05,  5.32s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 39/39 [03:17<00:00,  5.07s/it]
Class accuracy is: 81.601883%
No obj accuracy is: 97.991463%
Obj accuracy is: 75.976616%
```
### MAP Calculations
```python
0%|          | 0/39 [00:00<?, ?it/s]
  3%|β–Ž         | 1/39 [00:40<25:35, 40.40s/it]
  5%|β–Œ         | 2/39 [01:24<26:05, 42.31s/it]
  8%|β–Š         | 3/39 [02:01<24:02, 40.07s/it]
 10%|β–ˆ         | 4/39 [02:40<23:04, 39.57s/it]
 13%|β–ˆβ–Ž        | 5/39 [03:36<25:45, 45.46s/it]
 15%|β–ˆβ–Œ        | 6/39 [04:20<24:45, 45.00s/it]
 18%|β–ˆβ–Š        | 7/39 [05:03<23:37, 44.29s/it]
 21%|β–ˆβ–ˆ        | 8/39 [05:47<22:55, 44.36s/it]
 23%|β–ˆβ–ˆβ–Ž       | 9/39 [06:33<22:25, 44.84s/it]
 26%|β–ˆβ–ˆβ–Œ       | 10/39 [07:06<19:54, 41.20s/it]
 28%|β–ˆβ–ˆβ–Š       | 11/39 [07:58<20:45, 44.49s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 12/39 [08:36<19:10, 42.60s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 13/39 [09:20<18:33, 42.81s/it]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 14/39 [10:01<17:43, 42.53s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 15/39 [10:42<16:49, 42.04s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 16/39 [11:25<16:10, 42.18s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 17/39 [12:12<16:02, 43.73s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 18/39 [12:56<15:20, 43.83s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 19/39 [13:36<14:12, 42.64s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 20/39 [14:20<13:37, 43.04s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 21/39 [14:58<12:27, 41.54s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 22/39 [15:43<12:01, 42.45s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 23/39 [16:29<11:35, 43.49s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 24/39 [17:13<10:55, 43.69s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 25/39 [18:02<10:34, 45.29s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 26/39 [18:41<09:25, 43.53s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 27/39 [19:26<08:45, 43.77s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 28/39 [20:04<07:44, 42.22s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 29/39 [20:45<06:56, 41.65s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 30/39 [21:32<06:30, 43.44s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 31/39 [22:16<05:47, 43.46s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 32/39 [22:52<04:49, 41.32s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 33/39 [23:36<04:13, 42.19s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 34/39 [24:18<03:29, 41.99s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 35/39 [25:00<02:48, 42.17s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 36/39 [25:46<02:09, 43.24s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 37/39 [26:29<01:26, 43.24s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 38/39 [27:18<00:44, 44.74s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 39/39 [27:46<00:00, 42.74s/it]
MAP: 0.43667954206466675
```
### Tensorboard Plots 
**Training Loss vs Steps:** ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/5cb753e0-377b-4d9f-a240-871270ed50db) 

**Validation Loss vs Steps:** 
(Info: Validation loss calculated every 10 epochs to save time, thats why the straight line) 
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/7401c0aa-f7ff-4a5b-bab2-dbb5ebe0b400) 

### GradCAM Representations
EigenCAM is used to generate CAM representation, since usal gradient based method wont work with detection models like Yolo, FRCNN etc.
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3e3917f1-c8d1-4c3f-a028-de1292575e0b)