Spaces:
Sleeping
Sleeping
title: ERA SESSION13 | |
emoji: π₯ | |
colorFrom: indigo | |
colorTo: indigo | |
sdk: gradio | |
sdk_version: 3.40.1 | |
app_file: app.py | |
pinned: false | |
license: mit | |
# ERA-SESSION13 YoloV3 with Pytorch Lightning & Gradio | |
HF Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13 | |
### Achieved: | |
1. **Training Loss: 3.680** | |
2. **Validation Loss: 4.940** | |
3. **Class accuracy: 81.601883%** | |
4. **No obj accuracy: 97.991463%** | |
5. **Obj accuracy: 75.976616%** | |
6. **MAP: 0.4366795** | |
### Results | |
![image](https://github.com/RaviNaik/ERA-SESSION13/blob/main/yolo_results.png) | |
### Gradio App | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/95335687-e717-4467-bcb1-227a79dd5c3f) | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3ab67d32-38e6-436a-86d4-b76b5bd52a77) | |
### Model Summary | |
```python | |
| Name | Type | Params | |
------------------------------------------------------------------- | |
0 | loss_fn | YoloLoss | 0 | |
1 | loss_fn.mse | MSELoss | 0 | |
2 | loss_fn.bce | BCEWithLogitsLoss | 0 | |
3 | loss_fn.entropy | CrossEntropyLoss | 0 | |
4 | loss_fn.sigmoid | Sigmoid | 0 | |
5 | layers | ModuleList | 61.6 M | |
6 | layers.0 | CNNBlock | 928 | |
7 | layers.0.conv | Conv2d | 864 | |
8 | layers.0.bn | BatchNorm2d | 64 | |
9 | layers.0.leaky | LeakyReLU | 0 | |
10 | layers.1 | CNNBlock | 18.6 K | |
11 | layers.1.conv | Conv2d | 18.4 K | |
12 | layers.1.bn | BatchNorm2d | 128 | |
13 | layers.1.leaky | LeakyReLU | 0 | |
14 | layers.2 | ResidualBlock | 20.7 K | |
15 | layers.2.layers | ModuleList | 20.7 K | |
16 | layers.2.layers.0 | Sequential | 20.7 K | |
17 | layers.2.layers.0.0 | CNNBlock | 2.1 K | |
18 | layers.2.layers.0.0.conv | Conv2d | 2.0 K | |
19 | layers.2.layers.0.0.bn | BatchNorm2d | 64 | |
20 | layers.2.layers.0.0.leaky | LeakyReLU | 0 | |
21 | layers.2.layers.0.1 | CNNBlock | 18.6 K | |
22 | layers.2.layers.0.1.conv | Conv2d | 18.4 K | |
23 | layers.2.layers.0.1.bn | BatchNorm2d | 128 | |
24 | layers.2.layers.0.1.leaky | LeakyReLU | 0 | |
25 | layers.3 | CNNBlock | 74.0 K | |
26 | layers.3.conv | Conv2d | 73.7 K | |
27 | layers.3.bn | BatchNorm2d | 256 | |
28 | layers.3.leaky | LeakyReLU | 0 | |
29 | layers.4 | ResidualBlock | 164 K | |
30 | layers.4.layers | ModuleList | 164 K | |
31 | layers.4.layers.0 | Sequential | 82.3 K | |
32 | layers.4.layers.0.0 | CNNBlock | 8.3 K | |
33 | layers.4.layers.0.0.conv | Conv2d | 8.2 K | |
34 | layers.4.layers.0.0.bn | BatchNorm2d | 128 | |
35 | layers.4.layers.0.0.leaky | LeakyReLU | 0 | |
36 | layers.4.layers.0.1 | CNNBlock | 74.0 K | |
37 | layers.4.layers.0.1.conv | Conv2d | 73.7 K | |
38 | layers.4.layers.0.1.bn | BatchNorm2d | 256 | |
39 | layers.4.layers.0.1.leaky | LeakyReLU | 0 | |
40 | layers.4.layers.1 | Sequential | 82.3 K | |
41 | layers.4.layers.1.0 | CNNBlock | 8.3 K | |
42 | layers.4.layers.1.0.conv | Conv2d | 8.2 K | |
43 | layers.4.layers.1.0.bn | BatchNorm2d | 128 | |
44 | layers.4.layers.1.0.leaky | LeakyReLU | 0 | |
45 | layers.4.layers.1.1 | CNNBlock | 74.0 K | |
46 | layers.4.layers.1.1.conv | Conv2d | 73.7 K | |
47 | layers.4.layers.1.1.bn | BatchNorm2d | 256 | |
48 | layers.4.layers.1.1.leaky | LeakyReLU | 0 | |
49 | layers.5 | CNNBlock | 295 K | |
50 | layers.5.conv | Conv2d | 294 K | |
51 | layers.5.bn | BatchNorm2d | 512 | |
52 | layers.5.leaky | LeakyReLU | 0 | |
53 | layers.6 | ResidualBlock | 2.6 M | |
54 | layers.6.layers | ModuleList | 2.6 M | |
55 | layers.6.layers.0 | Sequential | 328 K | |
56 | layers.6.layers.0.0 | CNNBlock | 33.0 K | |
57 | layers.6.layers.0.0.conv | Conv2d | 32.8 K | |
58 | layers.6.layers.0.0.bn | BatchNorm2d | 256 | |
59 | layers.6.layers.0.0.leaky | LeakyReLU | 0 | |
60 | layers.6.layers.0.1 | CNNBlock | 295 K | |
61 | layers.6.layers.0.1.conv | Conv2d | 294 K | |
62 | layers.6.layers.0.1.bn | BatchNorm2d | 512 | |
63 | layers.6.layers.0.1.leaky | LeakyReLU | 0 | |
64 | layers.6.layers.1 | Sequential | 328 K | |
65 | layers.6.layers.1.0 | CNNBlock | 33.0 K | |
66 | layers.6.layers.1.0.conv | Conv2d | 32.8 K | |
67 | layers.6.layers.1.0.bn | BatchNorm2d | 256 | |
68 | layers.6.layers.1.0.leaky | LeakyReLU | 0 | |
69 | layers.6.layers.1.1 | CNNBlock | 295 K | |
70 | layers.6.layers.1.1.conv | Conv2d | 294 K | |
71 | layers.6.layers.1.1.bn | BatchNorm2d | 512 | |
72 | layers.6.layers.1.1.leaky | LeakyReLU | 0 | |
73 | layers.6.layers.2 | Sequential | 328 K | |
74 | layers.6.layers.2.0 | CNNBlock | 33.0 K | |
75 | layers.6.layers.2.0.conv | Conv2d | 32.8 K | |
76 | layers.6.layers.2.0.bn | BatchNorm2d | 256 | |
77 | layers.6.layers.2.0.leaky | LeakyReLU | 0 | |
78 | layers.6.layers.2.1 | CNNBlock | 295 K | |
79 | layers.6.layers.2.1.conv | Conv2d | 294 K | |
80 | layers.6.layers.2.1.bn | BatchNorm2d | 512 | |
81 | layers.6.layers.2.1.leaky | LeakyReLU | 0 | |
82 | layers.6.layers.3 | Sequential | 328 K | |
83 | layers.6.layers.3.0 | CNNBlock | 33.0 K | |
84 | layers.6.layers.3.0.conv | Conv2d | 32.8 K | |
85 | layers.6.layers.3.0.bn | BatchNorm2d | 256 | |
86 | layers.6.layers.3.0.leaky | LeakyReLU | 0 | |
87 | layers.6.layers.3.1 | CNNBlock | 295 K | |
88 | layers.6.layers.3.1.conv | Conv2d | 294 K | |
89 | layers.6.layers.3.1.bn | BatchNorm2d | 512 | |
90 | layers.6.layers.3.1.leaky | LeakyReLU | 0 | |
91 | layers.6.layers.4 | Sequential | 328 K | |
92 | layers.6.layers.4.0 | CNNBlock | 33.0 K | |
93 | layers.6.layers.4.0.conv | Conv2d | 32.8 K | |
94 | layers.6.layers.4.0.bn | BatchNorm2d | 256 | |
95 | layers.6.layers.4.0.leaky | LeakyReLU | 0 | |
96 | layers.6.layers.4.1 | CNNBlock | 295 K | |
97 | layers.6.layers.4.1.conv | Conv2d | 294 K | |
98 | layers.6.layers.4.1.bn | BatchNorm2d | 512 | |
99 | layers.6.layers.4.1.leaky | LeakyReLU | 0 | |
100 | layers.6.layers.5 | Sequential | 328 K | |
101 | layers.6.layers.5.0 | CNNBlock | 33.0 K | |
102 | layers.6.layers.5.0.conv | Conv2d | 32.8 K | |
103 | layers.6.layers.5.0.bn | BatchNorm2d | 256 | |
104 | layers.6.layers.5.0.leaky | LeakyReLU | 0 | |
105 | layers.6.layers.5.1 | CNNBlock | 295 K | |
106 | layers.6.layers.5.1.conv | Conv2d | 294 K | |
107 | layers.6.layers.5.1.bn | BatchNorm2d | 512 | |
108 | layers.6.layers.5.1.leaky | LeakyReLU | 0 | |
109 | layers.6.layers.6 | Sequential | 328 K | |
110 | layers.6.layers.6.0 | CNNBlock | 33.0 K | |
111 | layers.6.layers.6.0.conv | Conv2d | 32.8 K | |
112 | layers.6.layers.6.0.bn | BatchNorm2d | 256 | |
113 | layers.6.layers.6.0.leaky | LeakyReLU | 0 | |
114 | layers.6.layers.6.1 | CNNBlock | 295 K | |
115 | layers.6.layers.6.1.conv | Conv2d | 294 K | |
116 | layers.6.layers.6.1.bn | BatchNorm2d | 512 | |
117 | layers.6.layers.6.1.leaky | LeakyReLU | 0 | |
118 | layers.6.layers.7 | Sequential | 328 K | |
119 | layers.6.layers.7.0 | CNNBlock | 33.0 K | |
120 | layers.6.layers.7.0.conv | Conv2d | 32.8 K | |
121 | layers.6.layers.7.0.bn | BatchNorm2d | 256 | |
122 | layers.6.layers.7.0.leaky | LeakyReLU | 0 | |
123 | layers.6.layers.7.1 | CNNBlock | 295 K | |
124 | layers.6.layers.7.1.conv | Conv2d | 294 K | |
125 | layers.6.layers.7.1.bn | BatchNorm2d | 512 | |
126 | layers.6.layers.7.1.leaky | LeakyReLU | 0 | |
127 | layers.7 | CNNBlock | 1.2 M | |
128 | layers.7.conv | Conv2d | 1.2 M | |
129 | layers.7.bn | BatchNorm2d | 1.0 K | |
130 | layers.7.leaky | LeakyReLU | 0 | |
131 | layers.8 | ResidualBlock | 10.5 M | |
132 | layers.8.layers | ModuleList | 10.5 M | |
133 | layers.8.layers.0 | Sequential | 1.3 M | |
134 | layers.8.layers.0.0 | CNNBlock | 131 K | |
135 | layers.8.layers.0.0.conv | Conv2d | 131 K | |
136 | layers.8.layers.0.0.bn | BatchNorm2d | 512 | |
137 | layers.8.layers.0.0.leaky | LeakyReLU | 0 | |
138 | layers.8.layers.0.1 | CNNBlock | 1.2 M | |
139 | layers.8.layers.0.1.conv | Conv2d | 1.2 M | |
140 | layers.8.layers.0.1.bn | BatchNorm2d | 1.0 K | |
141 | layers.8.layers.0.1.leaky | LeakyReLU | 0 | |
142 | layers.8.layers.1 | Sequential | 1.3 M | |
143 | layers.8.layers.1.0 | CNNBlock | 131 K | |
144 | layers.8.layers.1.0.conv | Conv2d | 131 K | |
145 | layers.8.layers.1.0.bn | BatchNorm2d | 512 | |
146 | layers.8.layers.1.0.leaky | LeakyReLU | 0 | |
147 | layers.8.layers.1.1 | CNNBlock | 1.2 M | |
148 | layers.8.layers.1.1.conv | Conv2d | 1.2 M | |
149 | layers.8.layers.1.1.bn | BatchNorm2d | 1.0 K | |
150 | layers.8.layers.1.1.leaky | LeakyReLU | 0 | |
151 | layers.8.layers.2 | Sequential | 1.3 M | |
152 | layers.8.layers.2.0 | CNNBlock | 131 K | |
153 | layers.8.layers.2.0.conv | Conv2d | 131 K | |
154 | layers.8.layers.2.0.bn | BatchNorm2d | 512 | |
155 | layers.8.layers.2.0.leaky | LeakyReLU | 0 | |
156 | layers.8.layers.2.1 | CNNBlock | 1.2 M | |
157 | layers.8.layers.2.1.conv | Conv2d | 1.2 M | |
158 | layers.8.layers.2.1.bn | BatchNorm2d | 1.0 K | |
159 | layers.8.layers.2.1.leaky | LeakyReLU | 0 | |
160 | layers.8.layers.3 | Sequential | 1.3 M | |
161 | layers.8.layers.3.0 | CNNBlock | 131 K | |
162 | layers.8.layers.3.0.conv | Conv2d | 131 K | |
163 | layers.8.layers.3.0.bn | BatchNorm2d | 512 | |
164 | layers.8.layers.3.0.leaky | LeakyReLU | 0 | |
165 | layers.8.layers.3.1 | CNNBlock | 1.2 M | |
166 | layers.8.layers.3.1.conv | Conv2d | 1.2 M | |
167 | layers.8.layers.3.1.bn | BatchNorm2d | 1.0 K | |
168 | layers.8.layers.3.1.leaky | LeakyReLU | 0 | |
169 | layers.8.layers.4 | Sequential | 1.3 M | |
170 | layers.8.layers.4.0 | CNNBlock | 131 K | |
171 | layers.8.layers.4.0.conv | Conv2d | 131 K | |
172 | layers.8.layers.4.0.bn | BatchNorm2d | 512 | |
173 | layers.8.layers.4.0.leaky | LeakyReLU | 0 | |
174 | layers.8.layers.4.1 | CNNBlock | 1.2 M | |
175 | layers.8.layers.4.1.conv | Conv2d | 1.2 M | |
176 | layers.8.layers.4.1.bn | BatchNorm2d | 1.0 K | |
177 | layers.8.layers.4.1.leaky | LeakyReLU | 0 | |
178 | layers.8.layers.5 | Sequential | 1.3 M | |
179 | layers.8.layers.5.0 | CNNBlock | 131 K | |
180 | layers.8.layers.5.0.conv | Conv2d | 131 K | |
181 | layers.8.layers.5.0.bn | BatchNorm2d | 512 | |
182 | layers.8.layers.5.0.leaky | LeakyReLU | 0 | |
183 | layers.8.layers.5.1 | CNNBlock | 1.2 M | |
184 | layers.8.layers.5.1.conv | Conv2d | 1.2 M | |
185 | layers.8.layers.5.1.bn | BatchNorm2d | 1.0 K | |
186 | layers.8.layers.5.1.leaky | LeakyReLU | 0 | |
187 | layers.8.layers.6 | Sequential | 1.3 M | |
188 | layers.8.layers.6.0 | CNNBlock | 131 K | |
189 | layers.8.layers.6.0.conv | Conv2d | 131 K | |
190 | layers.8.layers.6.0.bn | BatchNorm2d | 512 | |
191 | layers.8.layers.6.0.leaky | LeakyReLU | 0 | |
192 | layers.8.layers.6.1 | CNNBlock | 1.2 M | |
193 | layers.8.layers.6.1.conv | Conv2d | 1.2 M | |
194 | layers.8.layers.6.1.bn | BatchNorm2d | 1.0 K | |
195 | layers.8.layers.6.1.leaky | LeakyReLU | 0 | |
196 | layers.8.layers.7 | Sequential | 1.3 M | |
197 | layers.8.layers.7.0 | CNNBlock | 131 K | |
198 | layers.8.layers.7.0.conv | Conv2d | 131 K | |
199 | layers.8.layers.7.0.bn | BatchNorm2d | 512 | |
200 | layers.8.layers.7.0.leaky | LeakyReLU | 0 | |
201 | layers.8.layers.7.1 | CNNBlock | 1.2 M | |
202 | layers.8.layers.7.1.conv | Conv2d | 1.2 M | |
203 | layers.8.layers.7.1.bn | BatchNorm2d | 1.0 K | |
204 | layers.8.layers.7.1.leaky | LeakyReLU | 0 | |
205 | layers.9 | CNNBlock | 4.7 M | |
206 | layers.9.conv | Conv2d | 4.7 M | |
207 | layers.9.bn | BatchNorm2d | 2.0 K | |
208 | layers.9.leaky | LeakyReLU | 0 | |
209 | layers.10 | ResidualBlock | 21.0 M | |
210 | layers.10.layers | ModuleList | 21.0 M | |
211 | layers.10.layers.0 | Sequential | 5.2 M | |
212 | layers.10.layers.0.0 | CNNBlock | 525 K | |
213 | layers.10.layers.0.0.conv | Conv2d | 524 K | |
214 | layers.10.layers.0.0.bn | BatchNorm2d | 1.0 K | |
215 | layers.10.layers.0.0.leaky | LeakyReLU | 0 | |
216 | layers.10.layers.0.1 | CNNBlock | 4.7 M | |
217 | layers.10.layers.0.1.conv | Conv2d | 4.7 M | |
218 | layers.10.layers.0.1.bn | BatchNorm2d | 2.0 K | |
219 | layers.10.layers.0.1.leaky | LeakyReLU | 0 | |
220 | layers.10.layers.1 | Sequential | 5.2 M | |
221 | layers.10.layers.1.0 | CNNBlock | 525 K | |
222 | layers.10.layers.1.0.conv | Conv2d | 524 K | |
223 | layers.10.layers.1.0.bn | BatchNorm2d | 1.0 K | |
224 | layers.10.layers.1.0.leaky | LeakyReLU | 0 | |
225 | layers.10.layers.1.1 | CNNBlock | 4.7 M | |
226 | layers.10.layers.1.1.conv | Conv2d | 4.7 M | |
227 | layers.10.layers.1.1.bn | BatchNorm2d | 2.0 K | |
228 | layers.10.layers.1.1.leaky | LeakyReLU | 0 | |
229 | layers.10.layers.2 | Sequential | 5.2 M | |
230 | layers.10.layers.2.0 | CNNBlock | 525 K | |
231 | layers.10.layers.2.0.conv | Conv2d | 524 K | |
232 | layers.10.layers.2.0.bn | BatchNorm2d | 1.0 K | |
233 | layers.10.layers.2.0.leaky | LeakyReLU | 0 | |
234 | layers.10.layers.2.1 | CNNBlock | 4.7 M | |
235 | layers.10.layers.2.1.conv | Conv2d | 4.7 M | |
236 | layers.10.layers.2.1.bn | BatchNorm2d | 2.0 K | |
237 | layers.10.layers.2.1.leaky | LeakyReLU | 0 | |
238 | layers.10.layers.3 | Sequential | 5.2 M | |
239 | layers.10.layers.3.0 | CNNBlock | 525 K | |
240 | layers.10.layers.3.0.conv | Conv2d | 524 K | |
241 | layers.10.layers.3.0.bn | BatchNorm2d | 1.0 K | |
242 | layers.10.layers.3.0.leaky | LeakyReLU | 0 | |
243 | layers.10.layers.3.1 | CNNBlock | 4.7 M | |
244 | layers.10.layers.3.1.conv | Conv2d | 4.7 M | |
245 | layers.10.layers.3.1.bn | BatchNorm2d | 2.0 K | |
246 | layers.10.layers.3.1.leaky | LeakyReLU | 0 | |
247 | layers.11 | CNNBlock | 525 K | |
248 | layers.11.conv | Conv2d | 524 K | |
249 | layers.11.bn | BatchNorm2d | 1.0 K | |
250 | layers.11.leaky | LeakyReLU | 0 | |
251 | layers.12 | CNNBlock | 4.7 M | |
252 | layers.12.conv | Conv2d | 4.7 M | |
253 | layers.12.bn | BatchNorm2d | 2.0 K | |
254 | layers.12.leaky | LeakyReLU | 0 | |
255 | layers.13 | ResidualBlock | 5.2 M | |
256 | layers.13.layers | ModuleList | 5.2 M | |
257 | layers.13.layers.0 | Sequential | 5.2 M | |
258 | layers.13.layers.0.0 | CNNBlock | 525 K | |
259 | layers.13.layers.0.0.conv | Conv2d | 524 K | |
260 | layers.13.layers.0.0.bn | BatchNorm2d | 1.0 K | |
261 | layers.13.layers.0.0.leaky | LeakyReLU | 0 | |
262 | layers.13.layers.0.1 | CNNBlock | 4.7 M | |
263 | layers.13.layers.0.1.conv | Conv2d | 4.7 M | |
264 | layers.13.layers.0.1.bn | BatchNorm2d | 2.0 K | |
265 | layers.13.layers.0.1.leaky | LeakyReLU | 0 | |
266 | layers.14 | CNNBlock | 525 K | |
267 | layers.14.conv | Conv2d | 524 K | |
268 | layers.14.bn | BatchNorm2d | 1.0 K | |
269 | layers.14.leaky | LeakyReLU | 0 | |
270 | layers.15 | ScalePrediction | 4.8 M | |
271 | layers.15.pred | Sequential | 4.8 M | |
272 | layers.15.pred.0 | CNNBlock | 4.7 M | |
273 | layers.15.pred.0.conv | Conv2d | 4.7 M | |
274 | layers.15.pred.0.bn | BatchNorm2d | 2.0 K | |
275 | layers.15.pred.0.leaky | LeakyReLU | 0 | |
276 | layers.15.pred.1 | CNNBlock | 77.0 K | |
277 | layers.15.pred.1.conv | Conv2d | 76.9 K | |
278 | layers.15.pred.1.bn | BatchNorm2d | 150 | |
279 | layers.15.pred.1.leaky | LeakyReLU | 0 | |
280 | layers.16 | CNNBlock | 131 K | |
281 | layers.16.conv | Conv2d | 131 K | |
282 | layers.16.bn | BatchNorm2d | 512 | |
283 | layers.16.leaky | LeakyReLU | 0 | |
284 | layers.17 | Upsample | 0 | |
285 | layers.18 | CNNBlock | 197 K | |
286 | layers.18.conv | Conv2d | 196 K | |
287 | layers.18.bn | BatchNorm2d | 512 | |
288 | layers.18.leaky | LeakyReLU | 0 | |
289 | layers.19 | CNNBlock | 1.2 M | |
290 | layers.19.conv | Conv2d | 1.2 M | |
291 | layers.19.bn | BatchNorm2d | 1.0 K | |
292 | layers.19.leaky | LeakyReLU | 0 | |
293 | layers.20 | ResidualBlock | 1.3 M | |
294 | layers.20.layers | ModuleList | 1.3 M | |
295 | layers.20.layers.0 | Sequential | 1.3 M | |
296 | layers.20.layers.0.0 | CNNBlock | 131 K | |
297 | layers.20.layers.0.0.conv | Conv2d | 131 K | |
298 | layers.20.layers.0.0.bn | BatchNorm2d | 512 | |
299 | layers.20.layers.0.0.leaky | LeakyReLU | 0 | |
300 | layers.20.layers.0.1 | CNNBlock | 1.2 M | |
301 | layers.20.layers.0.1.conv | Conv2d | 1.2 M | |
302 | layers.20.layers.0.1.bn | BatchNorm2d | 1.0 K | |
303 | layers.20.layers.0.1.leaky | LeakyReLU | 0 | |
304 | layers.21 | CNNBlock | 131 K | |
305 | layers.21.conv | Conv2d | 131 K | |
306 | layers.21.bn | BatchNorm2d | 512 | |
307 | layers.21.leaky | LeakyReLU | 0 | |
308 | layers.22 | ScalePrediction | 1.2 M | |
309 | layers.22.pred | Sequential | 1.2 M | |
310 | layers.22.pred.0 | CNNBlock | 1.2 M | |
311 | layers.22.pred.0.conv | Conv2d | 1.2 M | |
312 | layers.22.pred.0.bn | BatchNorm2d | 1.0 K | |
313 | layers.22.pred.0.leaky | LeakyReLU | 0 | |
314 | layers.22.pred.1 | CNNBlock | 38.6 K | |
315 | layers.22.pred.1.conv | Conv2d | 38.5 K | |
316 | layers.22.pred.1.bn | BatchNorm2d | 150 | |
317 | layers.22.pred.1.leaky | LeakyReLU | 0 | |
318 | layers.23 | CNNBlock | 33.0 K | |
319 | layers.23.conv | Conv2d | 32.8 K | |
320 | layers.23.bn | BatchNorm2d | 256 | |
321 | layers.23.leaky | LeakyReLU | 0 | |
322 | layers.24 | Upsample | 0 | |
323 | layers.25 | CNNBlock | 49.4 K | |
324 | layers.25.conv | Conv2d | 49.2 K | |
325 | layers.25.bn | BatchNorm2d | 256 | |
326 | layers.25.leaky | LeakyReLU | 0 | |
327 | layers.26 | CNNBlock | 295 K | |
328 | layers.26.conv | Conv2d | 294 K | |
329 | layers.26.bn | BatchNorm2d | 512 | |
330 | layers.26.leaky | LeakyReLU | 0 | |
331 | layers.27 | ResidualBlock | 328 K | |
332 | layers.27.layers | ModuleList | 328 K | |
333 | layers.27.layers.0 | Sequential | 328 K | |
334 | layers.27.layers.0.0 | CNNBlock | 33.0 K | |
335 | layers.27.layers.0.0.conv | Conv2d | 32.8 K | |
336 | layers.27.layers.0.0.bn | BatchNorm2d | 256 | |
337 | layers.27.layers.0.0.leaky | LeakyReLU | 0 | |
338 | layers.27.layers.0.1 | CNNBlock | 295 K | |
339 | layers.27.layers.0.1.conv | Conv2d | 294 K | |
340 | layers.27.layers.0.1.bn | BatchNorm2d | 512 | |
341 | layers.27.layers.0.1.leaky | LeakyReLU | 0 | |
342 | layers.28 | CNNBlock | 33.0 K | |
343 | layers.28.conv | Conv2d | 32.8 K | |
344 | layers.28.bn | BatchNorm2d | 256 | |
345 | layers.28.leaky | LeakyReLU | 0 | |
346 | layers.29 | ScalePrediction | 314 K | |
347 | layers.29.pred | Sequential | 314 K | |
348 | layers.29.pred.0 | CNNBlock | 295 K | |
349 | layers.29.pred.0.conv | Conv2d | 294 K | |
350 | layers.29.pred.0.bn | BatchNorm2d | 512 | |
351 | layers.29.pred.0.leaky | LeakyReLU | 0 | |
352 | layers.29.pred.1 | CNNBlock | 19.4 K | |
353 | layers.29.pred.1.conv | Conv2d | 19.3 K | |
354 | layers.29.pred.1.bn | BatchNorm2d | 150 | |
355 | layers.29.pred.1.leaky | LeakyReLU | 0 | |
------------------------------------------------------------------- | |
61.6 M Trainable params | |
0 Non-trainable params | |
61.6 M Total params | |
246.506 Total estimated model params size (MB) | |
``` | |
### LR Finder | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/a6d64f13-a7b7-4e17-abfc-3ec86e84b710) | |
### Loss & Accuracy | |
**Training & Validation Loss:** | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/9391157e-a889-480d-b233-b72e86745245) | |
**Testing Accuracy:** | |
```python | |
0%| | 0/39 [00:00<?, ?it/s] | |
3%|β | 1/39 [00:05<03:24, 5.37s/it] | |
5%|β | 2/39 [00:11<03:32, 5.75s/it] | |
8%|β | 3/39 [00:16<03:14, 5.41s/it] | |
10%|β | 4/39 [00:21<03:06, 5.33s/it] | |
13%|ββ | 5/39 [00:26<02:55, 5.17s/it] | |
15%|ββ | 6/39 [00:31<02:50, 5.16s/it] | |
18%|ββ | 7/39 [00:36<02:43, 5.11s/it] | |
21%|ββ | 8/39 [00:42<02:48, 5.43s/it] | |
23%|βββ | 9/39 [00:48<02:44, 5.47s/it] | |
26%|βββ | 10/39 [00:54<02:41, 5.58s/it] | |
28%|βββ | 11/39 [00:59<02:36, 5.59s/it] | |
31%|βββ | 12/39 [01:05<02:35, 5.77s/it] | |
33%|ββββ | 13/39 [01:11<02:28, 5.70s/it] | |
36%|ββββ | 14/39 [01:16<02:15, 5.42s/it] | |
38%|ββββ | 15/39 [01:21<02:07, 5.30s/it] | |
41%|ββββ | 16/39 [01:26<02:02, 5.34s/it] | |
44%|βββββ | 17/39 [01:31<01:54, 5.23s/it] | |
46%|βββββ | 18/39 [01:36<01:49, 5.22s/it] | |
49%|βββββ | 19/39 [01:42<01:43, 5.20s/it] | |
51%|ββββββ | 20/39 [01:46<01:33, 4.94s/it] | |
54%|ββββββ | 21/39 [01:50<01:23, 4.64s/it] | |
56%|ββββββ | 22/39 [01:54<01:14, 4.41s/it] | |
59%|ββββββ | 23/39 [01:57<01:03, 3.96s/it] | |
62%|βββββββ | 24/39 [02:00<00:54, 3.66s/it] | |
64%|βββββββ | 25/39 [02:04<00:55, 3.94s/it] | |
67%|βββββββ | 26/39 [02:10<00:56, 4.38s/it] | |
69%|βββββββ | 27/39 [02:14<00:53, 4.47s/it] | |
72%|ββββββββ | 28/39 [02:20<00:52, 4.77s/it] | |
74%|ββββββββ | 29/39 [02:25<00:50, 5.04s/it] | |
77%|ββββββββ | 30/39 [02:31<00:47, 5.25s/it] | |
79%|ββββββββ | 31/39 [02:37<00:42, 5.36s/it] | |
82%|βββββββββ | 32/39 [02:42<00:38, 5.43s/it] | |
85%|βββββββββ | 33/39 [02:47<00:31, 5.24s/it] | |
87%|βββββββββ | 34/39 [02:53<00:26, 5.29s/it] | |
90%|βββββββββ | 35/39 [02:58<00:21, 5.32s/it] | |
92%|ββββββββββ| 36/39 [03:03<00:15, 5.23s/it] | |
95%|ββββββββββ| 37/39 [03:08<00:10, 5.26s/it] | |
97%|ββββββββββ| 38/39 [03:14<00:05, 5.32s/it] | |
100%|ββββββββββ| 39/39 [03:17<00:00, 5.07s/it] | |
Class accuracy is: 81.601883% | |
No obj accuracy is: 97.991463% | |
Obj accuracy is: 75.976616% | |
``` | |
### MAP Calculations | |
```python | |
0%| | 0/39 [00:00<?, ?it/s] | |
3%|β | 1/39 [00:40<25:35, 40.40s/it] | |
5%|β | 2/39 [01:24<26:05, 42.31s/it] | |
8%|β | 3/39 [02:01<24:02, 40.07s/it] | |
10%|β | 4/39 [02:40<23:04, 39.57s/it] | |
13%|ββ | 5/39 [03:36<25:45, 45.46s/it] | |
15%|ββ | 6/39 [04:20<24:45, 45.00s/it] | |
18%|ββ | 7/39 [05:03<23:37, 44.29s/it] | |
21%|ββ | 8/39 [05:47<22:55, 44.36s/it] | |
23%|βββ | 9/39 [06:33<22:25, 44.84s/it] | |
26%|βββ | 10/39 [07:06<19:54, 41.20s/it] | |
28%|βββ | 11/39 [07:58<20:45, 44.49s/it] | |
31%|βββ | 12/39 [08:36<19:10, 42.60s/it] | |
33%|ββββ | 13/39 [09:20<18:33, 42.81s/it] | |
36%|ββββ | 14/39 [10:01<17:43, 42.53s/it] | |
38%|ββββ | 15/39 [10:42<16:49, 42.04s/it] | |
41%|ββββ | 16/39 [11:25<16:10, 42.18s/it] | |
44%|βββββ | 17/39 [12:12<16:02, 43.73s/it] | |
46%|βββββ | 18/39 [12:56<15:20, 43.83s/it] | |
49%|βββββ | 19/39 [13:36<14:12, 42.64s/it] | |
51%|ββββββ | 20/39 [14:20<13:37, 43.04s/it] | |
54%|ββββββ | 21/39 [14:58<12:27, 41.54s/it] | |
56%|ββββββ | 22/39 [15:43<12:01, 42.45s/it] | |
59%|ββββββ | 23/39 [16:29<11:35, 43.49s/it] | |
62%|βββββββ | 24/39 [17:13<10:55, 43.69s/it] | |
64%|βββββββ | 25/39 [18:02<10:34, 45.29s/it] | |
67%|βββββββ | 26/39 [18:41<09:25, 43.53s/it] | |
69%|βββββββ | 27/39 [19:26<08:45, 43.77s/it] | |
72%|ββββββββ | 28/39 [20:04<07:44, 42.22s/it] | |
74%|ββββββββ | 29/39 [20:45<06:56, 41.65s/it] | |
77%|ββββββββ | 30/39 [21:32<06:30, 43.44s/it] | |
79%|ββββββββ | 31/39 [22:16<05:47, 43.46s/it] | |
82%|βββββββββ | 32/39 [22:52<04:49, 41.32s/it] | |
85%|βββββββββ | 33/39 [23:36<04:13, 42.19s/it] | |
87%|βββββββββ | 34/39 [24:18<03:29, 41.99s/it] | |
90%|βββββββββ | 35/39 [25:00<02:48, 42.17s/it] | |
92%|ββββββββββ| 36/39 [25:46<02:09, 43.24s/it] | |
95%|ββββββββββ| 37/39 [26:29<01:26, 43.24s/it] | |
97%|ββββββββββ| 38/39 [27:18<00:44, 44.74s/it] | |
100%|ββββββββββ| 39/39 [27:46<00:00, 42.74s/it] | |
MAP: 0.43667954206466675 | |
``` | |
### Tensorboard Plots | |
**Training Loss vs Steps:** ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/5cb753e0-377b-4d9f-a240-871270ed50db) | |
**Validation Loss vs Steps:** | |
(Info: Validation loss calculated every 10 epochs to save time, thats why the straight line) | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/7401c0aa-f7ff-4a5b-bab2-dbb5ebe0b400) | |
### GradCAM Representations | |
EigenCAM is used to generate CAM representation, since usal gradient based method wont work with detection models like Yolo, FRCNN etc. | |
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3e3917f1-c8d1-4c3f-a028-de1292575e0b) |