--- title: YoloV3 with Pytorch Lightning & Gradio emoji: 🔥 colorFrom: indigo colorTo: indigo sdk: gradio sdk_version: 3.40.1 app_file: app.py pinned: false license: mit --- # YoloV3 with Pytorch Lightning & Gradio HF Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13 ### Achieved: 1. **Training Loss: 3.680** 2. **Validation Loss: 4.940** 3. **Class accuracy: 81.601883%** 4. **No obj accuracy: 97.991463%** 5. **Obj accuracy: 75.976616%** 6. **MAP: 0.4366795** ### Results ![image](https://github.com/RaviNaik/ERA-SESSION13/blob/main/yolo_results.png) ### Gradio App ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/95335687-e717-4467-bcb1-227a79dd5c3f) ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3ab67d32-38e6-436a-86d4-b76b5bd52a77) ### Model Summary ```python | Name | Type | Params ------------------------------------------------------------------- 0 | loss_fn | YoloLoss | 0 1 | loss_fn.mse | MSELoss | 0 2 | loss_fn.bce | BCEWithLogitsLoss | 0 3 | loss_fn.entropy | CrossEntropyLoss | 0 4 | loss_fn.sigmoid | Sigmoid | 0 5 | layers | ModuleList | 61.6 M 6 | layers.0 | CNNBlock | 928 7 | layers.0.conv | Conv2d | 864 8 | layers.0.bn | BatchNorm2d | 64 9 | layers.0.leaky | LeakyReLU | 0 10 | layers.1 | CNNBlock | 18.6 K 11 | layers.1.conv | Conv2d | 18.4 K 12 | layers.1.bn | BatchNorm2d | 128 13 | layers.1.leaky | LeakyReLU | 0 14 | layers.2 | ResidualBlock | 20.7 K 15 | layers.2.layers | ModuleList | 20.7 K 16 | layers.2.layers.0 | Sequential | 20.7 K 17 | layers.2.layers.0.0 | CNNBlock | 2.1 K 18 | layers.2.layers.0.0.conv | Conv2d | 2.0 K 19 | layers.2.layers.0.0.bn | BatchNorm2d | 64 20 | layers.2.layers.0.0.leaky | LeakyReLU | 0 21 | layers.2.layers.0.1 | CNNBlock | 18.6 K 22 | layers.2.layers.0.1.conv | Conv2d | 18.4 K 23 | layers.2.layers.0.1.bn | BatchNorm2d | 128 24 | layers.2.layers.0.1.leaky | LeakyReLU | 0 25 | layers.3 | CNNBlock | 74.0 K 26 | layers.3.conv | Conv2d | 73.7 K 27 | layers.3.bn | BatchNorm2d | 256 28 | layers.3.leaky | LeakyReLU | 0 29 | layers.4 | ResidualBlock | 164 K 30 | layers.4.layers | ModuleList | 164 K 31 | layers.4.layers.0 | Sequential | 82.3 K 32 | layers.4.layers.0.0 | CNNBlock | 8.3 K 33 | layers.4.layers.0.0.conv | Conv2d | 8.2 K 34 | layers.4.layers.0.0.bn | BatchNorm2d | 128 35 | layers.4.layers.0.0.leaky | LeakyReLU | 0 36 | layers.4.layers.0.1 | CNNBlock | 74.0 K 37 | layers.4.layers.0.1.conv | Conv2d | 73.7 K 38 | layers.4.layers.0.1.bn | BatchNorm2d | 256 39 | layers.4.layers.0.1.leaky | LeakyReLU | 0 40 | layers.4.layers.1 | Sequential | 82.3 K 41 | layers.4.layers.1.0 | CNNBlock | 8.3 K 42 | layers.4.layers.1.0.conv | Conv2d | 8.2 K 43 | layers.4.layers.1.0.bn | BatchNorm2d | 128 44 | layers.4.layers.1.0.leaky | LeakyReLU | 0 45 | layers.4.layers.1.1 | CNNBlock | 74.0 K 46 | layers.4.layers.1.1.conv | Conv2d | 73.7 K 47 | layers.4.layers.1.1.bn | BatchNorm2d | 256 48 | layers.4.layers.1.1.leaky | LeakyReLU | 0 49 | layers.5 | CNNBlock | 295 K 50 | layers.5.conv | Conv2d | 294 K 51 | layers.5.bn | BatchNorm2d | 512 52 | layers.5.leaky | LeakyReLU | 0 53 | layers.6 | ResidualBlock | 2.6 M 54 | layers.6.layers | ModuleList | 2.6 M 55 | layers.6.layers.0 | Sequential | 328 K 56 | layers.6.layers.0.0 | CNNBlock | 33.0 K 57 | layers.6.layers.0.0.conv | Conv2d | 32.8 K 58 | layers.6.layers.0.0.bn | BatchNorm2d | 256 59 | layers.6.layers.0.0.leaky | LeakyReLU | 0 60 | layers.6.layers.0.1 | CNNBlock | 295 K 61 | layers.6.layers.0.1.conv | Conv2d | 294 K 62 | layers.6.layers.0.1.bn | BatchNorm2d | 512 63 | layers.6.layers.0.1.leaky | LeakyReLU | 0 64 | layers.6.layers.1 | Sequential | 328 K 65 | layers.6.layers.1.0 | CNNBlock | 33.0 K 66 | layers.6.layers.1.0.conv | Conv2d | 32.8 K 67 | layers.6.layers.1.0.bn | BatchNorm2d | 256 68 | layers.6.layers.1.0.leaky | LeakyReLU | 0 69 | layers.6.layers.1.1 | CNNBlock | 295 K 70 | layers.6.layers.1.1.conv | Conv2d | 294 K 71 | layers.6.layers.1.1.bn | BatchNorm2d | 512 72 | layers.6.layers.1.1.leaky | LeakyReLU | 0 73 | layers.6.layers.2 | Sequential | 328 K 74 | layers.6.layers.2.0 | CNNBlock | 33.0 K 75 | layers.6.layers.2.0.conv | Conv2d | 32.8 K 76 | layers.6.layers.2.0.bn | BatchNorm2d | 256 77 | layers.6.layers.2.0.leaky | LeakyReLU | 0 78 | layers.6.layers.2.1 | CNNBlock | 295 K 79 | layers.6.layers.2.1.conv | Conv2d | 294 K 80 | layers.6.layers.2.1.bn | BatchNorm2d | 512 81 | layers.6.layers.2.1.leaky | LeakyReLU | 0 82 | layers.6.layers.3 | Sequential | 328 K 83 | layers.6.layers.3.0 | CNNBlock | 33.0 K 84 | layers.6.layers.3.0.conv | Conv2d | 32.8 K 85 | layers.6.layers.3.0.bn | BatchNorm2d | 256 86 | layers.6.layers.3.0.leaky | LeakyReLU | 0 87 | layers.6.layers.3.1 | CNNBlock | 295 K 88 | layers.6.layers.3.1.conv | Conv2d | 294 K 89 | layers.6.layers.3.1.bn | BatchNorm2d | 512 90 | layers.6.layers.3.1.leaky | LeakyReLU | 0 91 | layers.6.layers.4 | Sequential | 328 K 92 | layers.6.layers.4.0 | CNNBlock | 33.0 K 93 | layers.6.layers.4.0.conv | Conv2d | 32.8 K 94 | layers.6.layers.4.0.bn | BatchNorm2d | 256 95 | layers.6.layers.4.0.leaky | LeakyReLU | 0 96 | layers.6.layers.4.1 | CNNBlock | 295 K 97 | layers.6.layers.4.1.conv | Conv2d | 294 K 98 | layers.6.layers.4.1.bn | BatchNorm2d | 512 99 | layers.6.layers.4.1.leaky | LeakyReLU | 0 100 | layers.6.layers.5 | Sequential | 328 K 101 | layers.6.layers.5.0 | CNNBlock | 33.0 K 102 | layers.6.layers.5.0.conv | Conv2d | 32.8 K 103 | layers.6.layers.5.0.bn | BatchNorm2d | 256 104 | layers.6.layers.5.0.leaky | LeakyReLU | 0 105 | layers.6.layers.5.1 | CNNBlock | 295 K 106 | layers.6.layers.5.1.conv | Conv2d | 294 K 107 | layers.6.layers.5.1.bn | BatchNorm2d | 512 108 | layers.6.layers.5.1.leaky | LeakyReLU | 0 109 | layers.6.layers.6 | Sequential | 328 K 110 | layers.6.layers.6.0 | CNNBlock | 33.0 K 111 | layers.6.layers.6.0.conv | Conv2d | 32.8 K 112 | layers.6.layers.6.0.bn | BatchNorm2d | 256 113 | layers.6.layers.6.0.leaky | LeakyReLU | 0 114 | layers.6.layers.6.1 | CNNBlock | 295 K 115 | layers.6.layers.6.1.conv | Conv2d | 294 K 116 | layers.6.layers.6.1.bn | BatchNorm2d | 512 117 | layers.6.layers.6.1.leaky | LeakyReLU | 0 118 | layers.6.layers.7 | Sequential | 328 K 119 | layers.6.layers.7.0 | CNNBlock | 33.0 K 120 | layers.6.layers.7.0.conv | Conv2d | 32.8 K 121 | layers.6.layers.7.0.bn | BatchNorm2d | 256 122 | layers.6.layers.7.0.leaky | LeakyReLU | 0 123 | layers.6.layers.7.1 | CNNBlock | 295 K 124 | layers.6.layers.7.1.conv | Conv2d | 294 K 125 | layers.6.layers.7.1.bn | BatchNorm2d | 512 126 | layers.6.layers.7.1.leaky | LeakyReLU | 0 127 | layers.7 | CNNBlock | 1.2 M 128 | layers.7.conv | Conv2d | 1.2 M 129 | layers.7.bn | BatchNorm2d | 1.0 K 130 | layers.7.leaky | LeakyReLU | 0 131 | layers.8 | ResidualBlock | 10.5 M 132 | layers.8.layers | ModuleList | 10.5 M 133 | layers.8.layers.0 | Sequential | 1.3 M 134 | layers.8.layers.0.0 | CNNBlock | 131 K 135 | layers.8.layers.0.0.conv | Conv2d | 131 K 136 | layers.8.layers.0.0.bn | BatchNorm2d | 512 137 | layers.8.layers.0.0.leaky | LeakyReLU | 0 138 | layers.8.layers.0.1 | CNNBlock | 1.2 M 139 | layers.8.layers.0.1.conv | Conv2d | 1.2 M 140 | layers.8.layers.0.1.bn | BatchNorm2d | 1.0 K 141 | layers.8.layers.0.1.leaky | LeakyReLU | 0 142 | layers.8.layers.1 | Sequential | 1.3 M 143 | layers.8.layers.1.0 | CNNBlock | 131 K 144 | layers.8.layers.1.0.conv | Conv2d | 131 K 145 | layers.8.layers.1.0.bn | BatchNorm2d | 512 146 | layers.8.layers.1.0.leaky | LeakyReLU | 0 147 | layers.8.layers.1.1 | CNNBlock | 1.2 M 148 | layers.8.layers.1.1.conv | Conv2d | 1.2 M 149 | layers.8.layers.1.1.bn | BatchNorm2d | 1.0 K 150 | layers.8.layers.1.1.leaky | LeakyReLU | 0 151 | layers.8.layers.2 | Sequential | 1.3 M 152 | layers.8.layers.2.0 | CNNBlock | 131 K 153 | layers.8.layers.2.0.conv | Conv2d | 131 K 154 | layers.8.layers.2.0.bn | BatchNorm2d | 512 155 | layers.8.layers.2.0.leaky | LeakyReLU | 0 156 | layers.8.layers.2.1 | CNNBlock | 1.2 M 157 | layers.8.layers.2.1.conv | Conv2d | 1.2 M 158 | layers.8.layers.2.1.bn | BatchNorm2d | 1.0 K 159 | layers.8.layers.2.1.leaky | LeakyReLU | 0 160 | layers.8.layers.3 | Sequential | 1.3 M 161 | layers.8.layers.3.0 | CNNBlock | 131 K 162 | layers.8.layers.3.0.conv | Conv2d | 131 K 163 | layers.8.layers.3.0.bn | BatchNorm2d | 512 164 | layers.8.layers.3.0.leaky | LeakyReLU | 0 165 | layers.8.layers.3.1 | CNNBlock | 1.2 M 166 | layers.8.layers.3.1.conv | Conv2d | 1.2 M 167 | layers.8.layers.3.1.bn | BatchNorm2d | 1.0 K 168 | layers.8.layers.3.1.leaky | LeakyReLU | 0 169 | layers.8.layers.4 | Sequential | 1.3 M 170 | layers.8.layers.4.0 | CNNBlock | 131 K 171 | layers.8.layers.4.0.conv | Conv2d | 131 K 172 | layers.8.layers.4.0.bn | BatchNorm2d | 512 173 | layers.8.layers.4.0.leaky | LeakyReLU | 0 174 | layers.8.layers.4.1 | CNNBlock | 1.2 M 175 | layers.8.layers.4.1.conv | Conv2d | 1.2 M 176 | layers.8.layers.4.1.bn | BatchNorm2d | 1.0 K 177 | layers.8.layers.4.1.leaky | LeakyReLU | 0 178 | layers.8.layers.5 | Sequential | 1.3 M 179 | layers.8.layers.5.0 | CNNBlock | 131 K 180 | layers.8.layers.5.0.conv | Conv2d | 131 K 181 | layers.8.layers.5.0.bn | BatchNorm2d | 512 182 | layers.8.layers.5.0.leaky | LeakyReLU | 0 183 | layers.8.layers.5.1 | CNNBlock | 1.2 M 184 | layers.8.layers.5.1.conv | Conv2d | 1.2 M 185 | layers.8.layers.5.1.bn | BatchNorm2d | 1.0 K 186 | layers.8.layers.5.1.leaky | LeakyReLU | 0 187 | layers.8.layers.6 | Sequential | 1.3 M 188 | layers.8.layers.6.0 | CNNBlock | 131 K 189 | layers.8.layers.6.0.conv | Conv2d | 131 K 190 | layers.8.layers.6.0.bn | BatchNorm2d | 512 191 | layers.8.layers.6.0.leaky | LeakyReLU | 0 192 | layers.8.layers.6.1 | CNNBlock | 1.2 M 193 | layers.8.layers.6.1.conv | Conv2d | 1.2 M 194 | layers.8.layers.6.1.bn | BatchNorm2d | 1.0 K 195 | layers.8.layers.6.1.leaky | LeakyReLU | 0 196 | layers.8.layers.7 | Sequential | 1.3 M 197 | layers.8.layers.7.0 | CNNBlock | 131 K 198 | layers.8.layers.7.0.conv | Conv2d | 131 K 199 | layers.8.layers.7.0.bn | BatchNorm2d | 512 200 | layers.8.layers.7.0.leaky | LeakyReLU | 0 201 | layers.8.layers.7.1 | CNNBlock | 1.2 M 202 | layers.8.layers.7.1.conv | Conv2d | 1.2 M 203 | layers.8.layers.7.1.bn | BatchNorm2d | 1.0 K 204 | layers.8.layers.7.1.leaky | LeakyReLU | 0 205 | layers.9 | CNNBlock | 4.7 M 206 | layers.9.conv | Conv2d | 4.7 M 207 | layers.9.bn | BatchNorm2d | 2.0 K 208 | layers.9.leaky | LeakyReLU | 0 209 | layers.10 | ResidualBlock | 21.0 M 210 | layers.10.layers | ModuleList | 21.0 M 211 | layers.10.layers.0 | Sequential | 5.2 M 212 | layers.10.layers.0.0 | CNNBlock | 525 K 213 | layers.10.layers.0.0.conv | Conv2d | 524 K 214 | layers.10.layers.0.0.bn | BatchNorm2d | 1.0 K 215 | layers.10.layers.0.0.leaky | LeakyReLU | 0 216 | layers.10.layers.0.1 | CNNBlock | 4.7 M 217 | layers.10.layers.0.1.conv | Conv2d | 4.7 M 218 | layers.10.layers.0.1.bn | BatchNorm2d | 2.0 K 219 | layers.10.layers.0.1.leaky | LeakyReLU | 0 220 | layers.10.layers.1 | Sequential | 5.2 M 221 | layers.10.layers.1.0 | CNNBlock | 525 K 222 | layers.10.layers.1.0.conv | Conv2d | 524 K 223 | layers.10.layers.1.0.bn | BatchNorm2d | 1.0 K 224 | layers.10.layers.1.0.leaky | LeakyReLU | 0 225 | layers.10.layers.1.1 | CNNBlock | 4.7 M 226 | layers.10.layers.1.1.conv | Conv2d | 4.7 M 227 | layers.10.layers.1.1.bn | BatchNorm2d | 2.0 K 228 | layers.10.layers.1.1.leaky | LeakyReLU | 0 229 | layers.10.layers.2 | Sequential | 5.2 M 230 | layers.10.layers.2.0 | CNNBlock | 525 K 231 | layers.10.layers.2.0.conv | Conv2d | 524 K 232 | layers.10.layers.2.0.bn | BatchNorm2d | 1.0 K 233 | layers.10.layers.2.0.leaky | LeakyReLU | 0 234 | layers.10.layers.2.1 | CNNBlock | 4.7 M 235 | layers.10.layers.2.1.conv | Conv2d | 4.7 M 236 | layers.10.layers.2.1.bn | BatchNorm2d | 2.0 K 237 | layers.10.layers.2.1.leaky | LeakyReLU | 0 238 | layers.10.layers.3 | Sequential | 5.2 M 239 | layers.10.layers.3.0 | CNNBlock | 525 K 240 | layers.10.layers.3.0.conv | Conv2d | 524 K 241 | layers.10.layers.3.0.bn | BatchNorm2d | 1.0 K 242 | layers.10.layers.3.0.leaky | LeakyReLU | 0 243 | layers.10.layers.3.1 | CNNBlock | 4.7 M 244 | layers.10.layers.3.1.conv | Conv2d | 4.7 M 245 | layers.10.layers.3.1.bn | BatchNorm2d | 2.0 K 246 | layers.10.layers.3.1.leaky | LeakyReLU | 0 247 | layers.11 | CNNBlock | 525 K 248 | layers.11.conv | Conv2d | 524 K 249 | layers.11.bn | BatchNorm2d | 1.0 K 250 | layers.11.leaky | LeakyReLU | 0 251 | layers.12 | CNNBlock | 4.7 M 252 | layers.12.conv | Conv2d | 4.7 M 253 | layers.12.bn | BatchNorm2d | 2.0 K 254 | layers.12.leaky | LeakyReLU | 0 255 | layers.13 | ResidualBlock | 5.2 M 256 | layers.13.layers | ModuleList | 5.2 M 257 | layers.13.layers.0 | Sequential | 5.2 M 258 | layers.13.layers.0.0 | CNNBlock | 525 K 259 | layers.13.layers.0.0.conv | Conv2d | 524 K 260 | layers.13.layers.0.0.bn | BatchNorm2d | 1.0 K 261 | layers.13.layers.0.0.leaky | LeakyReLU | 0 262 | layers.13.layers.0.1 | CNNBlock | 4.7 M 263 | layers.13.layers.0.1.conv | Conv2d | 4.7 M 264 | layers.13.layers.0.1.bn | BatchNorm2d | 2.0 K 265 | layers.13.layers.0.1.leaky | LeakyReLU | 0 266 | layers.14 | CNNBlock | 525 K 267 | layers.14.conv | Conv2d | 524 K 268 | layers.14.bn | BatchNorm2d | 1.0 K 269 | layers.14.leaky | LeakyReLU | 0 270 | layers.15 | ScalePrediction | 4.8 M 271 | layers.15.pred | Sequential | 4.8 M 272 | layers.15.pred.0 | CNNBlock | 4.7 M 273 | layers.15.pred.0.conv | Conv2d | 4.7 M 274 | layers.15.pred.0.bn | BatchNorm2d | 2.0 K 275 | layers.15.pred.0.leaky | LeakyReLU | 0 276 | layers.15.pred.1 | CNNBlock | 77.0 K 277 | layers.15.pred.1.conv | Conv2d | 76.9 K 278 | layers.15.pred.1.bn | BatchNorm2d | 150 279 | layers.15.pred.1.leaky | LeakyReLU | 0 280 | layers.16 | CNNBlock | 131 K 281 | layers.16.conv | Conv2d | 131 K 282 | layers.16.bn | BatchNorm2d | 512 283 | layers.16.leaky | LeakyReLU | 0 284 | layers.17 | Upsample | 0 285 | layers.18 | CNNBlock | 197 K 286 | layers.18.conv | Conv2d | 196 K 287 | layers.18.bn | BatchNorm2d | 512 288 | layers.18.leaky | LeakyReLU | 0 289 | layers.19 | CNNBlock | 1.2 M 290 | layers.19.conv | Conv2d | 1.2 M 291 | layers.19.bn | BatchNorm2d | 1.0 K 292 | layers.19.leaky | LeakyReLU | 0 293 | layers.20 | ResidualBlock | 1.3 M 294 | layers.20.layers | ModuleList | 1.3 M 295 | layers.20.layers.0 | Sequential | 1.3 M 296 | layers.20.layers.0.0 | CNNBlock | 131 K 297 | layers.20.layers.0.0.conv | Conv2d | 131 K 298 | layers.20.layers.0.0.bn | BatchNorm2d | 512 299 | layers.20.layers.0.0.leaky | LeakyReLU | 0 300 | layers.20.layers.0.1 | CNNBlock | 1.2 M 301 | layers.20.layers.0.1.conv | Conv2d | 1.2 M 302 | layers.20.layers.0.1.bn | BatchNorm2d | 1.0 K 303 | layers.20.layers.0.1.leaky | LeakyReLU | 0 304 | layers.21 | CNNBlock | 131 K 305 | layers.21.conv | Conv2d | 131 K 306 | layers.21.bn | BatchNorm2d | 512 307 | layers.21.leaky | LeakyReLU | 0 308 | layers.22 | ScalePrediction | 1.2 M 309 | layers.22.pred | Sequential | 1.2 M 310 | layers.22.pred.0 | CNNBlock | 1.2 M 311 | layers.22.pred.0.conv | Conv2d | 1.2 M 312 | layers.22.pred.0.bn | BatchNorm2d | 1.0 K 313 | layers.22.pred.0.leaky | LeakyReLU | 0 314 | layers.22.pred.1 | CNNBlock | 38.6 K 315 | layers.22.pred.1.conv | Conv2d | 38.5 K 316 | layers.22.pred.1.bn | BatchNorm2d | 150 317 | layers.22.pred.1.leaky | LeakyReLU | 0 318 | layers.23 | CNNBlock | 33.0 K 319 | layers.23.conv | Conv2d | 32.8 K 320 | layers.23.bn | BatchNorm2d | 256 321 | layers.23.leaky | LeakyReLU | 0 322 | layers.24 | Upsample | 0 323 | layers.25 | CNNBlock | 49.4 K 324 | layers.25.conv | Conv2d | 49.2 K 325 | layers.25.bn | BatchNorm2d | 256 326 | layers.25.leaky | LeakyReLU | 0 327 | layers.26 | CNNBlock | 295 K 328 | layers.26.conv | Conv2d | 294 K 329 | layers.26.bn | BatchNorm2d | 512 330 | layers.26.leaky | LeakyReLU | 0 331 | layers.27 | ResidualBlock | 328 K 332 | layers.27.layers | ModuleList | 328 K 333 | layers.27.layers.0 | Sequential | 328 K 334 | layers.27.layers.0.0 | CNNBlock | 33.0 K 335 | layers.27.layers.0.0.conv | Conv2d | 32.8 K 336 | layers.27.layers.0.0.bn | BatchNorm2d | 256 337 | layers.27.layers.0.0.leaky | LeakyReLU | 0 338 | layers.27.layers.0.1 | CNNBlock | 295 K 339 | layers.27.layers.0.1.conv | Conv2d | 294 K 340 | layers.27.layers.0.1.bn | BatchNorm2d | 512 341 | layers.27.layers.0.1.leaky | LeakyReLU | 0 342 | layers.28 | CNNBlock | 33.0 K 343 | layers.28.conv | Conv2d | 32.8 K 344 | layers.28.bn | BatchNorm2d | 256 345 | layers.28.leaky | LeakyReLU | 0 346 | layers.29 | ScalePrediction | 314 K 347 | layers.29.pred | Sequential | 314 K 348 | layers.29.pred.0 | CNNBlock | 295 K 349 | layers.29.pred.0.conv | Conv2d | 294 K 350 | layers.29.pred.0.bn | BatchNorm2d | 512 351 | layers.29.pred.0.leaky | LeakyReLU | 0 352 | layers.29.pred.1 | CNNBlock | 19.4 K 353 | layers.29.pred.1.conv | Conv2d | 19.3 K 354 | layers.29.pred.1.bn | BatchNorm2d | 150 355 | layers.29.pred.1.leaky | LeakyReLU | 0 ------------------------------------------------------------------- 61.6 M Trainable params 0 Non-trainable params 61.6 M Total params 246.506 Total estimated model params size (MB) ``` ### LR Finder ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/a6d64f13-a7b7-4e17-abfc-3ec86e84b710) ### Loss & Accuracy **Training & Validation Loss:** ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/9391157e-a889-480d-b233-b72e86745245) **Testing Accuracy:** ```python 0%| | 0/39 [00:00