import gradio as gr import numpy as np from PIL import Image import torch import random import os import shutil import config from models.yolo import YOLOv3 from utils.data import PascalDataModule from utils.loss import YoloLoss from utils.gradcam import generate_gradcam from utils.utils import generate_result from markdown import model_stats, data_stats datamodule = PascalDataModule( train_csv_path=f"{config.DATASET}/train.csv", test_csv_path=f"{config.DATASET}/test.csv", batch_size=config.BATCH_SIZE, shuffle=config.SHUFFLE, num_workers=os.cpu_count() - 1, ) datamodule.setup() class FilterModel(torch.nn.Module): def __init__(self): super().__init__() self.yolo = YOLOv3.load_from_checkpoint( "model.ckpt", map_location={"cuda:1": "cpu"}, in_channels=3, num_classes=config.NUM_CLASSES, epochs=config.NUM_EPOCHS, loss_fn=YoloLoss, datamodule=datamodule, learning_rate=config.LEARNING_RATE, maxlr=config.LEARNING_RATE, scheduler_steps=len(datamodule.train_dataloader()), device_count=config.NUM_WORKERS, ) def forward(self, x): x = self.yolo(x) return x[-1] model = FilterModel() prediction_image = None def upload_file(files): file_paths = [file.name for file in files] return file_paths def read_image(path): img = Image.open(path) img.load() data = np.asarray(img, dtype="uint8") return data # def sample_images(): # all_imgs = os.listdir(config.IMG_DIR) # rand_inds = np.random.random_integers(0, len(all_imgs), 10).tolist() # images = [f"{config.IMG_DIR}/{all_imgs[ind]}" for ind in rand_inds] # return images all_imgs = os.listdir(config.IMG_DIR) random.shuffle(all_imgs) sample_images = [f"{config.IMG_DIR}/{all_imgs[i]}" for i in range(10)] def get_gradcam_images(gradcam_layer, images, gradcam_opacity): gradcam_images = [] target_layers = [model.yolo.layers[int(gradcam_layer)]] gradcam_images = generate_gradcam( model=model, target_layers=target_layers, images=images, use_cuda=False, transparency=gradcam_opacity, ) return gradcam_images def show_hide_gradcam(status): if not status: return [gr.update(visible=False) for i in range(3)] return [gr.update(visible=True) for i in range(3)] def set_prediction_image(evt: gr.SelectData, gallery): global prediction_image if isinstance(gallery[evt.index], dict): prediction_image = gallery[evt.index]["name"] else: prediction_image = gallery[evt.index][0]["name"] def predict(is_gradcam, gradcam_layer, gradcam_opacity): gradcam_images = [None] img = read_image(prediction_image) image_transformed = config.test_transforms(image=img, bboxes=[])["image"] if is_gradcam: images = [image_transformed] gradcam_images = get_gradcam_images(gradcam_layer, images, gradcam_opacity) data = image_transformed.unsqueeze(0) if not os.path.exists("output"): os.mkdir("output") else: shutil.rmtree("output") os.mkdir("output") generate_result( model=model.yolo, data=data, thresh=0.6, iou_thresh=0.5, anchors=model.yolo.scaled_anchors, ) result_images = os.listdir("output") result_images = [ f"output/{file}" for file in result_images if file.endswith(".png") ] return { output: gr.update(value=result_images[0]), gradcam_output: gr.update(value=gradcam_images[0]), } with gr.Blocks() as app: gr.Markdown("## ERA Session13 - PASCAL-VOC Object Detection with YoloV3") with gr.Row(): with gr.Column(): with gr.Box(): is_gradcam = gr.Checkbox( label="GradCAM Images", info="Display GradCAM images?", ) gradcam_layer = gr.Dropdown( choices=list(range(len(model.yolo.layers))), label="Select the layer", info="Please select the layer for which the GradCAM is required", interactive=True, visible=False, ) gradcam_opacity = gr.Slider( minimum=0, maximum=1, value=0.6, label="Opacity", info="Opacity of GradCAM output", interactive=True, visible=False, ) is_gradcam.input( show_hide_gradcam, inputs=[is_gradcam], outputs=[gradcam_layer, gradcam_opacity], ) with gr.Box(): # file_output = gr.File(file_types=["image"]) with gr.Group(): upload_gallery = gr.Gallery( value=None, label="Uploaded images", show_label=False, elem_id="gallery_upload", columns=5, rows=2, height="auto", object_fit="contain", ) upload_button = gr.UploadButton( "Click to Upload images", file_types=["image"], file_count="multiple", ) upload_button.upload(upload_file, upload_button, upload_gallery) with gr.Group(): sample_gallery = gr.Gallery( value=sample_images, label="Sample images", show_label=True, elem_id="gallery_sample", columns=5, rows=2, height="auto", object_fit="contain", ) upload_gallery.select(set_prediction_image, inputs=[upload_gallery]) sample_gallery.select(set_prediction_image, inputs=[sample_gallery]) run_btn = gr.Button() with gr.Column(): with gr.Box(): output = gr.Image(value=None, label="Model Result") with gr.Box(): gradcam_output = gr.Image(value=None, label="GradCAM Image") run_btn.click( predict, inputs=[ is_gradcam, gradcam_layer, gradcam_opacity, ], outputs=[output, gradcam_output], ) with gr.Row(): with gr.Box(): with gr.Row(): with gr.Column(): with gr.Box(): gr.Markdown(model_stats) with gr.Column(): with gr.Box(): gr.Markdown(data_stats) app.launch()