Spaces:
Sleeping
Sleeping
import sys | |
import time | |
from pathlib import Path | |
from typing import Literal, Optional | |
import lightning as L | |
import torch | |
from lightning.fabric.plugins import BitsandbytesPrecision | |
from lightning.fabric.strategies import FSDPStrategy | |
# support running without installing as a package | |
wd = Path(__file__).parent.parent.resolve() | |
sys.path.append(str(wd)) | |
from generate.base import generate | |
from lit_gpt import GPT, Config, Tokenizer | |
from lit_gpt.model import Block | |
from lit_gpt.utils import ( | |
check_valid_checkpoint_dir, | |
get_default_supported_precision, | |
gptq_quantization, | |
load_checkpoint, | |
) | |
from scripts.prepare_alpaca import generate_prompt | |
def main( | |
prompt: str = "What food do llamas eat?", | |
input: str = "", | |
finetuned_path: Path = Path("out/full/alpaca/lit_model_finetuned.pth"), | |
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"), | |
quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None, | |
max_new_tokens: int = 100, | |
top_k: Optional[int] = 200, | |
temperature: float = 0.8, | |
strategy: str = "auto", | |
devices: int = 1, | |
precision: Optional[str] = None, | |
) -> None: | |
"""Generates a response based on a given instruction and an optional input. | |
This script will only work with checkpoints from the instruction-tuned GPT model. | |
See `finetune/full.py`. | |
Args: | |
prompt: The prompt/instruction (Alpaca style). | |
input: Optional input (Alpaca style). | |
finetuned_path: Path to the checkpoint with trained weights, which are the output of | |
`finetune/full.py`. | |
checkpoint_dir: The path to the checkpoint folder with pretrained GPT weights. | |
quantize: Whether to quantize the model and using which method: | |
- bnb.nf4, bnb.nf4-dq, bnb.fp4, bnb.fp4-dq: 4-bit quantization from bitsandbytes | |
- bnb.int8: 8-bit quantization from bitsandbytes | |
- gptq.int4: 4-bit quantization from GPTQ | |
for more details, see https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md | |
max_new_tokens: The number of generation steps to take. | |
top_k: The number of top most probable tokens to consider in the sampling process. | |
temperature: A value controlling the randomness of the sampling process. Higher values result in more random | |
samples. | |
strategy: Indicates the Fabric strategy setting to use. | |
devices: How many devices to use. | |
precision: Indicates the Fabric precision setting to use. | |
""" | |
precision = precision or get_default_supported_precision(training=False) | |
plugins = None | |
if quantize is not None: | |
if devices > 1: | |
raise NotImplementedError( | |
"Quantization is currently not supported for multi-GPU training. Please set devices=1 when using the" | |
" --quantize flag." | |
) | |
if quantize.startswith("bnb."): | |
if "mixed" in precision: | |
raise ValueError("Quantization and mixed precision is not supported.") | |
dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[precision] | |
plugins = BitsandbytesPrecision(quantize[4:], dtype) | |
precision = None | |
if strategy == "fsdp": | |
strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False) | |
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins) | |
fabric.launch() | |
check_valid_checkpoint_dir(checkpoint_dir) | |
config = Config.from_json(checkpoint_dir / "lit_config.json") | |
if quantize is not None and devices > 1: | |
raise NotImplementedError | |
checkpoint_path = finetuned_path | |
tokenizer = Tokenizer(checkpoint_dir) | |
sample = {"instruction": prompt, "input": input} | |
prompt = generate_prompt(sample) | |
encoded = tokenizer.encode(prompt, device=fabric.device) | |
prompt_length = encoded.size(0) | |
max_returned_tokens = prompt_length + max_new_tokens | |
fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr) | |
t0 = time.perf_counter() | |
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"): | |
model = GPT(config) | |
fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr) | |
with fabric.init_tensor(): | |
# set the max_seq_length to limit the memory usage to what we need | |
model.max_seq_length = max_returned_tokens | |
# enable the kv cache | |
model.set_kv_cache(batch_size=1) | |
model.eval() | |
model = fabric.setup(model) | |
t0 = time.perf_counter() | |
load_checkpoint(fabric, model, checkpoint_path) | |
fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr) | |
L.seed_everything(1234) | |
t0 = time.perf_counter() | |
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id) | |
t = time.perf_counter() - t0 | |
output = tokenizer.decode(y) | |
output = output.split("### Response:")[1].strip() | |
fabric.print(output) | |
tokens_generated = y.size(0) - prompt_length | |
fabric.print(f"\n\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr) | |
if fabric.device.type == "cuda": | |
fabric.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr) | |
if __name__ == "__main__": | |
from jsonargparse import CLI | |
torch.set_float32_matmul_precision("high") | |
CLI(main) | |