ERA-Session12 / app.py
ravi.naik
Added error handling
aa9b93a
raw
history blame
10.5 kB
import gradio as gr
import random
import pathlib
import numpy as np
from PIL import Image
import torch
import torchvision
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from models.resnet_lightning import ResNet
from utils.data import CIFARDataModule
from utils.transforms import test_transform
from utils.common import get_misclassified_data
inv_normalize = torchvision.transforms.Normalize(
mean=[-0.50 / 0.23, -0.50 / 0.23, -0.50 / 0.23], std=[1 / 0.23, 1 / 0.23, 1 / 0.23]
)
datamodule = CIFARDataModule()
datamodule.setup()
classes = datamodule.train_dataset.classes
model = ResNet.load_from_checkpoint("model.ckpt")
model = model.to("cpu")
prediction_image = None
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def read_image(path):
img = Image.open(path)
img.load()
data = np.asarray(img, dtype="uint8")
return data
# def sample_images():
# images = []
# length = len(datamodule.test_dataset)
# classes = datamodule.train_dataset.classes
# for i in range(10):
# idx = random.randint(0, length - 1)
# image, label = datamodule.test_dataset[idx]
# image = inv_normalize(image).permute(1, 2, 0).numpy()
# images.append((image, classes[label]))
# return images
def sample_images():
sample_imges_dir = pathlib.Path("./sample_images")
sample_images = list(sample_imges_dir.iterdir())
sample_image_labels = [image.stem for image in sample_images]
return list(zip(sample_images, sample_image_labels))
def get_misclassified_images(misclassified_count):
misclassified_images = []
misclassified_data = get_misclassified_data(
model=model,
device="cpu",
test_loader=datamodule.test_dataloader(),
count=misclassified_count,
)
for i in range(misclassified_count):
img = misclassified_data[i][0].squeeze().to("cpu")
img = inv_normalize(img)
img = np.transpose(img.numpy(), (1, 2, 0))
label = f"Label: {classes[misclassified_data[i][1].item()]} | Prediction: {classes[misclassified_data[i][2].item()]}"
misclassified_images.append((img, label))
return misclassified_images
def get_gradcam_images(gradcam_layer, gradcam_count, gradcam_opacity):
gradcam_images = []
if gradcam_layer == "Layer1":
target_layers = [model.layer1[-1]]
elif gradcam_layer == "Layer2":
target_layers = [model.layer2[-1]]
else:
target_layers = [model.layer3[-1]]
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
data = get_misclassified_data(
model=model,
device="cpu",
test_loader=datamodule.test_dataloader(),
count=gradcam_count,
)
for i in range(gradcam_count):
input_tensor = data[i][0]
# Get the activations of the layer for the images
grayscale_cam = cam(input_tensor=input_tensor, targets=None)
grayscale_cam = grayscale_cam[0, :]
# Get back the original image
img = input_tensor.squeeze(0).to("cpu")
if inv_normalize is not None:
img = inv_normalize(img)
rgb_img = np.transpose(img, (1, 2, 0))
rgb_img = rgb_img.numpy()
# Mix the activations on the original image
visualization = show_cam_on_image(
rgb_img, grayscale_cam, use_rgb=True, image_weight=gradcam_opacity
)
label = f"Label: {classes[data[i][1].item()]} | Prediction: {classes[data[i][2].item()]}"
gradcam_images.append((visualization, label))
return gradcam_images
def show_hide_misclassified(status):
if not status:
return {misclassified_count: gr.update(visible=False)}
return {misclassified_count: gr.update(visible=True)}
def show_hide_gradcam(status):
if not status:
return [gr.update(visible=False) for i in range(3)]
return [gr.update(visible=True) for i in range(3)]
def set_prediction_image(evt: gr.SelectData, gallery):
global prediction_image
if isinstance(gallery[evt.index], dict):
prediction_image = gallery[evt.index]["name"]
else:
prediction_image = gallery[evt.index][0]["name"]
def predict(
is_misclassified,
misclassified_count,
is_gradcam,
gradcam_count,
gradcam_layer,
gradcam_opacity,
num_classes,
):
if prediction_image is None:
raise gr.Error(
"Please select one of the sample image or upload an image for prediction!"
)
misclassified_images = None
if is_misclassified:
misclassified_images = get_misclassified_images(int(misclassified_count))
gradcam_images = None
if is_gradcam:
gradcam_images = get_gradcam_images(
gradcam_layer, int(gradcam_count), gradcam_opacity
)
img = read_image(prediction_image)
image_transformed = test_transform(image=img)["image"]
output = model(image_transformed.unsqueeze(0))
preds = torch.softmax(output, dim=1).squeeze().detach().numpy()
indices = (
output.argsort(descending=True).squeeze().detach().numpy()[: int(num_classes)]
)
predictions = {classes[i]: round(float(preds[i]), 2) for i in indices}
return {
miscalssfied_output: gr.update(value=misclassified_images),
gradcam_output: gr.update(value=gradcam_images),
prediction_label: gr.update(value=predictions),
}
with gr.Blocks() as app:
gr.Markdown("## ERA Session12 - CIFAR10 Classification with ResNet")
with gr.Row():
with gr.Column():
with gr.Box():
is_misclassified = gr.Checkbox(
label="Misclassified Images", info="Display misclassified images?"
)
misclassified_count = gr.Dropdown(
choices=[str(i + 1) for i in range(20)],
value=5,
label="Select Number of Images",
info="Number of Misclassified images (Default:5)",
visible=False,
interactive=True,
)
is_misclassified.input(
show_hide_misclassified,
inputs=[is_misclassified],
outputs=[misclassified_count],
)
with gr.Box():
is_gradcam = gr.Checkbox(
label="GradCAM Images",
info="Display GradCAM images?",
)
gradcam_count = gr.Dropdown(
choices=[str(i + 1) for i in range(20)],
label="Select Number of Images",
info="Number of GradCAM images (Default:5)",
value=5,
interactive=True,
visible=False,
)
gradcam_layer = gr.Dropdown(
choices=["Layer1", "Layer2", "Layer3"],
label="Select the layer",
info="Please select the layer for which the GradCAM is required (Default:Layer3)",
interactive=True,
value="Layer3",
visible=False,
)
gradcam_opacity = gr.Slider(
minimum=0,
maximum=1,
value=0.6,
label="Opacity",
info="Opacity of GradCAM output",
interactive=True,
visible=False,
)
is_gradcam.input(
show_hide_gradcam,
inputs=[is_gradcam],
outputs=[gradcam_count, gradcam_layer, gradcam_opacity],
)
with gr.Box():
# file_output = gr.File(file_types=["image"])
with gr.Group():
upload_gallery = gr.Gallery(
value=None,
label="Uploaded images",
show_label=False,
elem_id="gallery_upload",
columns=5,
rows=2,
height="auto",
object_fit="contain",
)
upload_button = gr.UploadButton(
"Click to Upload images",
file_types=["image"],
file_count="multiple",
)
upload_button.upload(upload_file, upload_button, upload_gallery)
with gr.Group():
sample_gallery = gr.Gallery(
value=sample_images,
label="Sample images",
show_label=True,
elem_id="gallery_sample",
columns=5,
rows=2,
height="auto",
object_fit="contain",
)
upload_gallery.select(set_prediction_image, inputs=[upload_gallery])
sample_gallery.select(set_prediction_image, inputs=[sample_gallery])
with gr.Box():
num_classes = gr.Dropdown(
choices=[str(i + 1) for i in range(10)],
label="Select Number of Top Classes",
value=5,
interactive=True,
info="Number of Top target classes to be shown (Default:5)",
)
run_btn = gr.Button()
with gr.Column():
with gr.Box():
miscalssfied_output = gr.Gallery(
value=None, label="Misclassified Images", show_label=True
)
with gr.Box():
gradcam_output = gr.Gallery(
value=None, label="GradCAM Images", show_label=True
)
with gr.Box():
prediction_label = gr.Label(value=None, label="Predictions")
run_btn.click(
predict,
inputs=[
is_misclassified,
misclassified_count,
is_gradcam,
gradcam_count,
gradcam_layer,
gradcam_opacity,
num_classes,
],
outputs=[miscalssfied_output, gradcam_output, prediction_label],
)
app.launch()